Iberdrola Group, with a history of over 170 years, is an international leader committed to low-emission energies: it produces and supplies electricity to more than 100 million people in the countries in which it operates, more than 40.

As a result of our commitment to the environment and pledge to the decarbonisation of the economy, we stand out as the leading renewable energy company and we have managed to reduce our emissions in Europe by 75% since 2000, reaching levels that are 70% below the average figures of the companies from continental Europe in the sector.

Iberdrola is a world leader in clean energy, focused on promoting CO2 free installed capacity in our mix.

Nearly two decades ago, Iberdrola decided to strongly back clean energy. Since then, Iberdrola has invested tens of billions of Euros in renewable energy – onshore and offshore, wind energy and hydroelectric power – as well as in the grids needed to integrate this renewable energy, and in storage. This pioneering commitment to clean energy has made the company one of the world leaders, with a renewable capacity of almost 32,000 MW (and the number one wind power producer in the world).

From the beginning, Iberdrola's Group has promoted a core business based on a sustainable energy model, covering the need for stable, safe and competitive energy supplies and access for all people to this essential service under affordable economic conditions (service competitiveness and universality) with a focus on operations with lower emissions and greater efficiency in the production and use of energy where water has a fundamental role.

Once again, Iberdrola is very proud to participate in the CDP Water Disclosure 2020 and from 2012, we publish our answer in the CEO WATER MANDATE.

Water requires energy and energy requires water; which makes it a necessary resource for the activities of the Group. Iberdrola's awareness regarding the sustainable use of water is a reality; it is included in one of the 5 pillars of activity within the commitment made by the Group, as reflected in the Sustainability Policy. Water is an essential resource and fundamental to Iberdrola's business development, making the company aware of the importance of its management and conservation.

In thermal generation, 90% of the total amount of water withdrawn is used in cooling processes. The rest of the water withdrawn (10%) corresponds to other auxiliary services of the generation plants and consumption at offices.

After use in cooling and other auxiliary processes, 96% of the water withdrawn at thermal generation and cogeneration facilities returns to the receptor environment in a physico-chemical condition allowing it to be utilised by other users without affecting the natural environment. The other 4% has been consumed and/or retained in the various processes, or returned to the environment in the form of steam generated in the cooling systems of the thermal power plants.

W-EU0.1a

(W-EU0.1a) Which activities in the electric utilities sector does your organization engage in?

- Electricity generation
- Transmission
- Distribution
- Other, please specify (smart grids / demand response)
(W-EU0.1b) For your electricity generation activities, provide details of your nameplate capacity and the generation for each technology.

<table>
<thead>
<tr>
<th>Technology</th>
<th>Nameplate capacity (MW)</th>
<th>% of total nameplate capacity</th>
<th>Gross electricity generation (GWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal – hard</td>
<td>874</td>
<td>1.7</td>
<td>349</td>
</tr>
<tr>
<td>Lignite</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Oil</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gas</td>
<td>15939</td>
<td>30.6</td>
<td>68327</td>
</tr>
<tr>
<td>Biomass</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Waste (non-biomass)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nuclear</td>
<td>3177</td>
<td>6.1</td>
<td>23737</td>
</tr>
<tr>
<td>Fossil-fuel plants fitted with carbon capture and storage</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Geothermal</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hydropower</td>
<td>13170</td>
<td>25.3</td>
<td>18559</td>
</tr>
<tr>
<td>Wind</td>
<td>17854</td>
<td>34.4</td>
<td>96517</td>
</tr>
<tr>
<td>Solar</td>
<td>1018</td>
<td>1.9</td>
<td>1088</td>
</tr>
<tr>
<td>Marine</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other renewable</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other non-renewable</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>52082</td>
<td>100</td>
<td>151714</td>
</tr>
</tbody>
</table>

W0.2

(W0.2) State the start and end date of the year for which you are reporting data.

<table>
<thead>
<tr>
<th>Reporting year</th>
<th>Start date</th>
<th>End date</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>January 1 2019</td>
<td>December 31 2019</td>
</tr>
</tbody>
</table>

W0.3

(W0.3) Select the countries/areas for which you will be supplying data.
- Brazil
- Cyprus
- Germany
- Greece
- Hungary
- Mexico
- Portugal
- Romania
- Spain
- United Kingdom of Great Britain and Northern Ireland
- United States of America

W0.4

(W0.4) Select the currency used for all financial information disclosed throughout your response.
- EUR

W0.5

(W0.5) Select the option that best describes the reporting boundary for companies, entities, or groups for which water impacts on your business are being reported.
- Companies, entities or groups over which operational control is exercised

W0.6

(W0.6) Within this boundary, are there any geographies, facilities, water aspects, or other exclusions from your disclosure?
- Yes
(W0.6a) Please report the exclusions.

<table>
<thead>
<tr>
<th>Exclusion</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belgium</td>
<td>Iberdrola only has a Group office in Belgium. Activities in this country are considered not-significant in water related issues, and are not included in this disclosure. Even though, the application of the same procedures and processes as those applied within the Group is ensured, thus ensuring the guarantees as to work, basic rights, and environmental protection as derive therefrom. For more information, please visit our Sustainability Report, page 394 https://www.iberdrola.com/wcorp/gcp/idrola_US/corporativos/docs/IB_Sustainability_Report.pdf</td>
</tr>
<tr>
<td>Netherlands</td>
<td>Iberdrola only has electricity or gas supply and/or gas storage in Netherlands. Activities in this country are considered not-significant, and are not included in the sustainability boundaries. Even though, the application of the same procedures and processes as those applied within the Group is ensured, thus ensuring the guarantees as to work, basic rights, and environmental protection as derive therefrom. For more information, please visit our Sustainability Report, page 394 https://www.iberdrola.com/wcorp/gcp/idrola_US/corporativos/docs/IB_Sustainability_Report.pdf</td>
</tr>
<tr>
<td>Algeria, Belgium, Bulgaria, Costa Rica, Egypt, Russian Federation, Latvia, Montenegro, Qatar and South Africa.</td>
<td>Employees in these countries represent only 0.05% of the employees of the group. Environmental information on these activities is not included as it is not deemed relevant in terms of sustainability. For more information, please visit our Sustainability Report, page 295 https://www.iberdrola.com/wcorp/gcp/idrola_US/corporativos/docs/IB_Sustainability_Report.pdf</td>
</tr>
<tr>
<td>Spain and Mexico</td>
<td>Iberdrola has real state business only in Spain and Mexico. Activities in these countries are considered not-significant, and are not included in the sustainability boundaries. Even though, the application of the same procedures and processes as those applied within the Group is ensured, thus ensuring the guarantees as to work, basic rights, and environmental protection as derive therefrom. For more information, please visit our Sustainability Report, page 394 https://www.iberdrola.com/wcorp/gcp/idrola_US/corporativos/docs/IB_Sustainability_Report.pdf</td>
</tr>
<tr>
<td>Germany, France and Italy</td>
<td>Environmental information on sales activities in Germany, France and Italy is not consolidated, because it is not yet integrated into the corporate systems as at the date of preparation of this report. It will be included in future reports to the extent the systems collect this information. For more information, please visit our Sustainability Report, page 394 https://www.iberdrola.com/wcorp/gcp/idrola_US/corporativos/docs/IB_Sustainability_Report.pdf</td>
</tr>
</tbody>
</table>

W1. Current state

W1.1

(W1.1) Rate the importance (current and future) of water quality and water quantity to the success of your business.

<table>
<thead>
<tr>
<th>Direct use importance rating</th>
<th>Indirect use importance rating</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sufficient amounts of good quality freshwater available for use</td>
<td>Vital</td>
<td>Direct use: Water is a basic and irreplaceable natural resource in many of Iberdrola’s activities. The company’s awareness of this dependency and of the risks arising from water shortages has led it to set itself the objective of ensuring an increasingly rational and sustainable use of this resource. No withdrawals are made that significantly affect water resources or habitats relating to the water withdrawal points. The Iberdrola group does not have any plants located in areas considered to have water stress. Indirect Use: No supplier with a significant negative environmental impact has been detected. Furthermore, Iberdrola does not have major suppliers located in areas with water stress. The Group operates its Management System under an environmental management model that includes a life cycle analysis perspective to evaluate the environmental impacts of the activities and facilities.</td>
</tr>
<tr>
<td>Sufficient amounts of recycled, brackish and/or produced water available for use</td>
<td>Vital</td>
<td>Direct use: Sea water is the most important water source for our operations and is vital for our assets located in the coast. During 2019, 72% of the water withdrawn was salt-water or brackish water, and it is mainly used to process water from power plants from non-renewable generation and as cooling water. Indirect Use: No supplier with a significant negative environmental impact has been detected. Furthermore, Iberdrola does not have major suppliers located in areas with water stress. The high volumes of purchases made by the Iberdrola group drive growth in the countries where the company signs contracts, favouring business, industrial and social development in the regions by creating jobs along the entire supply chain. The Group operates its Management System under an environmental management model that includes a life cycle analysis perspective to evaluate the environmental impacts of the activities and facilities.</td>
</tr>
</tbody>
</table>

W1.2
(W1.2) Across all your operations, what proportion of the following water aspects are regularly measured and monitored?

<table>
<thead>
<tr>
<th>% of sites/facilities/operations</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water withdrawals – total volumes</td>
<td>100% For Iberdrola Group, this aspect is very relevant in all its facilities, so 100% of our generation plants monitor it. Within the Group’s activities, the largest volume of water withdrawn occurs at the thermal plant cooling systems, of which a small part is consumed in the process (evaporation); the majority is returned to the natural environment, following advanced treatment to ensure its quality, whilst the remainder, is used for internal services and other processes. Best available practices are used so that the withdrawal and consumption of water is the minimum possible and with the least impact on the environment, trying to recycle and reuse water to the maximum. Every 6 months this aspect is report to Iberdrola’s corporate environment department in order to be reviewed, consolidated and communicated.</td>
</tr>
<tr>
<td>Water withdrawals per source</td>
<td>100% All water collection is strictly regulated by government authorities, which assign permits and determine the maximum permissible volumes of collection to ensure that there are no significant impacts. The government also establishes and controls surface level limits and ecological flows at the hydropower generation reservoirs. Best available practices are used so that the withdrawal and consumption of water is the minimum possible and with the least impact on the environment, trying to recycle and reuse water to the maximum. Every year this aspect is reported to Iberdrola’s corporate department in order to be reviewed, consolidated, communicated (internally and externally) and managed according to our goals and objectives.</td>
</tr>
<tr>
<td>Entrained water associated with your metals & mining sector activities - total volumes [only oil & gas sector]</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Produced water associated with your oils & gas sector activities - total volumes [only oil & gas sector]</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Water withdrawals quality</td>
<td>100% Withdrawal, use and return to the environment is the water cycle needed for the generation of power at the thermal generation plants. The quality of this returned effluent is strictly controlled and is kept below the maximum acceptable values established by the government based on the characteristics of the withdrawal and discharge point (sea, reservoir or river).</td>
</tr>
<tr>
<td>Water discharges – total volumes</td>
<td>100% Effluents from the generating plants are treated before they are discharged into the receptor environment (i.e. the sea, reservoirs or rivers, wastewater treatment plants, etc.). Iberdrola has treatment plants and Water Quality Measurement Systems at its facilities that allow it to ensure a return to the environment in the desired condition, always in compliance with applicable environmental law (discharge authorizations), and reducing the risk of polluting. Every year this aspect is reported to Iberdrola’s corporate environment department in order to be reviewed, consolidated, communicated (internally and externally) and managed according to our goals and objectives.</td>
</tr>
<tr>
<td>Water discharges – volumes by destination</td>
<td>100% The main discharge comes from the cooling systems for the thermal generation plants. The water returned from cooling has insignificant physicochemical changes, including temperature changes, which is controlled so as not to exceed the established discharge limits. There is a thermal increase based on the difference between the water collected and the water discharged. The government establishes certain maximum allowable values for each plant based on the nature of the collection point and the discharge point (ocean, reservoir or river) and carries out monitoring. The plants continuously monitor the temperature of the discharge, and if limits are exceeded, the facility must correct the temperature or halt production. Every year this aspect is reported to Iberdrola’s corporate department in order to be reviewed, consolidated, communicated (internally and externally) and managed according to our goals and objectives.</td>
</tr>
<tr>
<td>Water discharges – volumes by treatment method</td>
<td>100% Thermal generation power plants have water treatment facilities that treat the waste water before it is returned to the receiving medium (sea, dam or river). Process waters are subjected to a physical and chemical treatment that includes the separation of hydrocarbons. Wastewater is treated in compact treatment systems with biological aerobic processes. Coal plants have a treatment system for slag from the plant, and a decantation/coagulation process that prevents the entry of particulate coal or coal in suspension into the receptor water. After being treated, the process water and the sanitation wastewater are diluted with the water returned from the cooling system and are discharged with continuous monitoring of various parameters (temperature, turbidity, conductivity, etc.). In Latin America, independent separation networks are used for industrial and sanitary water. Every year this aspect is reported to Iberdrola’s corporate department.</td>
</tr>
<tr>
<td>Water discharge quality – standard effluent parameters</td>
<td>100% Effluents from the generating plants are treated before they are discharged into the receptor environment (i.e. the sea, reservoirs or rivers, wastewater treatment plants, etc.). For example, in Spain and Mexico, water is discharged under constant monitoring of various parameters (temperature, turbidity, conductivity, etc.) by the Company and the Administration, once a month or once a quarter, to make sure that the characteristics of the effluent are always below the established limits. Also, at some Mexican plants and at the Klamath plant in the United States, treated waste water is reused in their cooling systems, avoiding the use of river or dam water. Every year this aspect is reported to Iberdrola’s corporate department in order to be reviewed, consolidated, communicated (internally and externally) and managed according to our goals and objectives.</td>
</tr>
<tr>
<td>Water discharge quality – temperature</td>
<td>100% After being treated, the process water and the sanitation wastewater are diluted with the water returned from the cooling system and are discharged with continuous monitoring of various parameters (temperature, turbidity, conductivity, etc.). Once a month or once a quarter, an accredited organisation performs the analyses and reports to the government.</td>
</tr>
<tr>
<td>Water consumption – total volume</td>
<td>100% Water use/overall production in 2019 has been 579 m3 / GWh. Continuous improvement is sought for processes of the facilities, so that the extraction and consumption of water is the minimum possible and has minimal impact on the environment. In addition, extraction of water is avoided in areas with water stress, and attempts are made to recycle and reuse water to the maximum extent possible. Water use is defined as the water captured, excluding seawater or saltwater and water discharged into the environment. Every year this aspect is reported to Iberdrola’s corporate environment department in order to be reviewed, consolidated, communicated (internally and externally) and managed according to our goals and objectives.</td>
</tr>
<tr>
<td>Water recycled/reused</td>
<td>100% Iberdrola’s goal is to reduce the generation of waste for any process or activity, and to prioritise recycling and the reuse thereof. Iberdrola commits to the concept of "circular economy" for all players within its activities, having joined the Circular Economy Pact of the Ministry of Agriculture and Fishing, Food and Environment (MITECO) in Spain. The management of waste conforms to the following principles: — Minimise the generation of waste at source. — Maximise the reuse, recycling and recovery of waste. — Promotion of awareness-raising campaigns regarding the minimisation of waste. — Specific treatment and management of hazardous waste. Also, Iberdrola provides additional information on its nuclear plants (General Radioactive Waste Plan, Enmisas72). Iberdrola’s nuclear power plants are included within the Environmental Radiological Monitoring Programme of the Nuclear Safety Council of Spain, monitoring the dispersion in the environment of controlled discharges from facilities.</td>
</tr>
<tr>
<td>The provision of fully-functioning, salltly managed WASH services to all workers</td>
<td>100% The health and safety of our employees is an indispensable goal of Iberdrola, ensuring implementation of the human right to water and sanitation. This follows the UN Guiding Principles for Business and Human Rights. Nevertheless, there is significant concern for the efficient and responsible use of running water by employees at offices and control buildings. For this purpose, there are awareness-raising campaigns and the installation of efficient systems to reduce the consumption of water, such as taps with photoelectric cells. Every year this aspect is reported to Iberdrola’s corporate environment department in order to be reviewed, consolidated, communicated (internally and externally) and managed according to our goals and objectives.</td>
</tr>
</tbody>
</table>
(W-EU1.2a) For your hydropower operations, what proportion of the following water aspects are regularly measured and monitored?

Water aspect	% Applicable	Not Applicable	Not Relevant	Relevant
Third party sources	17471	<Not Applicable>	<Not Applicable>	Aqueduct
Produced/Entrained water	1805	<Not Applicable>	<Not Applicable>	WRI
Groundwater – non-renewable	1467179	Higher	79% higher than the previous year. Withdrawal of this kind of water has increased respect to 2018, due to the last year lower precipitations.	
Groundwater – renewable	Not relevant	<Not Applicable>	<Not Applicable>	
Fresh surface water, including rainwater, water from wetlands, rivers, and lakes	Relevant	Lower	28% decrease in the total value of water withdrawal during 2019. The main reason is the decrease in hydropower production, approximately 22%, compared to 2018. 2,015,567 megaliters corresponds to water withdrawals from hydroelectric generation activities and 97,062,635 megaliters corresponds to hydro generation.	

(W1.2b) What are the total volumes of water withdrawn, discharged, and consumed across all your operations, and how do these volumes compare to the previous reporting year?

<table>
<thead>
<tr>
<th>Volume (megaliters/year)</th>
<th>Comparison with previous reporting year</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total withdrawals</td>
<td>Much lower</td>
<td>There has been a 27% decrease in the total volume of water withdrawn during 2019. The main reason is the decrease in hydropower production, approximately 22%, compared to 2018. 2,015,567 megaliters corresponds to water withdrawals from thermal generation activities and 97,062,635 megaliters corresponds to hydro generation.</td>
</tr>
<tr>
<td>Total discharges</td>
<td>Much lower</td>
<td>Total water discharged has decreased by 27%, complying with the main characteristic of the hydropower plants that we operate and returning the extracted water to the environment in the same or better conditions than the initial ones. 1,927,711 megaliters corresponds to water discharged from thermal generation activities and 98,990,346 megaliters corresponds to hydro generation.</td>
</tr>
<tr>
<td>Total consumption</td>
<td>About the same</td>
<td>Use of water (consumption) is defined as water withdrawn minus water discharged into the natural environment, and for hydropower generation. Iberdrola does not consume water, all the water withdrawn is discharged. Total water consumed in thermal generation processes has increased 3% related to 2018. Our sustainability report data is 88 hm3 because it takes into account the consumption of buildings, general services and that coming from the sludge in the UK plants (page 435, https://www.iberdrola.com/wcorp/gc/prodien_US/corporativos/docs/IB_Sustainability_Report.pdf)</td>
</tr>
</tbody>
</table>

(W1.2d) Indicate whether water is withdrawn from areas with water stress and provide the proportion.

<table>
<thead>
<tr>
<th>Withdrawals are from areas with water stress</th>
<th>% withdrawn from areas with water stress</th>
<th>Comparison with previous reporting year</th>
<th>Identification tool</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row No 1 No></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td>WRI</td>
<td>Aqueduct</td>
</tr>
</tbody>
</table>

(W1.2h) Provide total water withdrawal data by source.

<table>
<thead>
<tr>
<th>Source description</th>
<th>Relevance</th>
<th>Volume (megaliters/year)</th>
<th>Comparison with previous reporting year</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh surface water, including rainwater, water from wetlands, rivers, and lakes</td>
<td>Relevant</td>
<td>97592288</td>
<td>Lower</td>
<td>There has been a 28% decrease in the total value of water withdrawal from fresh water sources during 2019. The main reason is the decrease in hydropower production, 22%, compared to 2018. 529,653 megaliters corresponds to water withdrawal from fresh surface water from thermal generation activities and 97,062,635 megaliters corresponds to hydro generation.</td>
</tr>
<tr>
<td>Brackish surface water/Seawater</td>
<td>Relevant</td>
<td>1467179</td>
<td>Higher</td>
<td>19% higher than the previous year. Withdrawal of this kind of water has decreased respect to the last year being due to the last year lower precipitations.</td>
</tr>
<tr>
<td>Groundwater – renewable</td>
<td>Not relevant</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td></td>
</tr>
<tr>
<td>Groundwater – non-renewable</td>
<td>Relevant</td>
<td>1805</td>
<td>Much Higher</td>
<td>79% higher than the previous year. Withdrawal of this kind of water has increased respect to 2018, due to the lower precipitations,</td>
</tr>
<tr>
<td>Produced/Entrained water</td>
<td>Not relevant</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td></td>
</tr>
<tr>
<td>Third party sources</td>
<td>Relevant</td>
<td>17471</td>
<td>About the same</td>
<td>This value is almost the same as in 2018.</td>
</tr>
</tbody>
</table>
(W1.2i) Provide total water discharge data by destination.

<table>
<thead>
<tr>
<th>Relevance</th>
<th>Volume (megaliters/year)</th>
<th>Comparison with previous reporting year</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh surface water</td>
<td>Relevant 97532947</td>
<td>Lower</td>
<td>There has been a 30% decrease in the total value of water discharge to fresh water sources during 2019. The main reason is the decrease in hydroelectric production, 22% from 2018. The decrease in rainfall in Spain is also relevant. 470,312 megaliters corresponds to water discharged from thermal generation activities to fresh surface and 97,062,635 megaliters corresponds to hydro generation to fresh surface.</td>
</tr>
<tr>
<td>Brackish surface water/seawater</td>
<td>Relevant 1453877</td>
<td>Higher</td>
<td>Discharge of this kind of water has increased due to lower precipitations.</td>
</tr>
<tr>
<td>Groundwater</td>
<td>Not relevant</td>
<td><Not Applicable></td>
<td></td>
</tr>
<tr>
<td>Third-party destinations</td>
<td>Relevant 3522</td>
<td>Much lower</td>
<td>Decrease of 41% of the discharge of this kind of water is due to lower precipitations.</td>
</tr>
</tbody>
</table>

W-EU1.3

(W-EU1.3) Do you calculate water intensity for your electricity generation activities?

Yes

W-EU1.3a

(W-EU1.3a) Provide the following intensity information associated with your electricity generation activities.

<table>
<thead>
<tr>
<th>Water intensity value (m³)</th>
<th>Numerator water aspect</th>
<th>Denominator</th>
<th>Comparison with previous reporting year</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>579.09</td>
<td>Total water consumption</td>
<td>Other, please specify (GWh)</td>
<td>Lower</td>
<td>At the end of 2019, the total Group production was 151,714 GWh, and the total water consumption 87,856,000 m³, so, the water intensity value is 579.09, which is 5% lower than the previous year when it was 611.28 m³/GWh.</td>
</tr>
</tbody>
</table>

W1.4

(W1.4) Do you engage with your value chain on water-related issues?

Yes, our suppliers

W1.4a
(W1.4a) What proportion of suppliers do you request to report on their water use, risks and/or management information and what proportion of your procurement spend does this represent?

Row 1

<table>
<thead>
<tr>
<th>% of suppliers by number</th>
<th>76-100</th>
</tr>
</thead>
<tbody>
<tr>
<td>% of total procurement spend</td>
<td>76-100</td>
</tr>
</tbody>
</table>

Rationale for this coverage
In the management of suppliers and during the procurement process, the measures adopted to promote proper environmental behaviour by suppliers are based on the Procurement Policy, the Suppliers’ Code of Ethics and the specific environmental clauses in the procurement terms of the group. Subsequently, during the supply stage, the business units monitor the environmental performance of the supplier during the term of the contract. In this connection, priority will be given to suppliers that have advanced management systems certified by a third party and, in particular to: • Environmental management system • Quality management system • Occupational risk prevention system • Action plan for corporate social responsibility and respect for human rights. The Group operates its Management System under an environmental management model that includes a life cycle analysis perspective to evaluate the environmental impacts of the activities and facilities.

Impact of the engagement and measures of success
The procurement terms of the group establish certain environmental requirements to meet this commitment, and the company also performs various tracking and reporting activities on an on-going basis. The principal environmental risks are considered to be managed through the current management systems and the periodic audits that are performed. No supplier with a significant negative environmental impact has been detected in 2019. Furthermore, Iberdrola does not have major suppliers located in areas with water stress. Having established improvement objectives for all the Purchasing team on increasing purchases from analysed suppliers and increasing the percentage of purchases from A+ suppliers. A specific communication about their situation is sent to those suppliers with a B so that they try to improve to A+.

Comment
The Iberdrola group’s supply chain consists of two different processes: – The acquisition of material and equipment and the procurement of works and services, handled by the group’s Procurement Division, which is within the Finance and Resources Division. – The acquisition of fuel, handled by the Wholesale and Retail Business. Both processes are guided by the same principles emanating from the corporate policies and the Code of Ethics, and the specific environmental clauses.

(W1.4b) Provide details of any other water-related supplier engagement activity.

<table>
<thead>
<tr>
<th>Type of engagement</th>
<th>Innovation & collaboration</th>
</tr>
</thead>
</table>

Details of engagement
Encourage/incentivize innovation to reduce water impacts in products and services
Encourage/incentivize suppliers to work collaboratively with other users in their river basins

<table>
<thead>
<tr>
<th>% of suppliers by number</th>
<th>76-100</th>
</tr>
</thead>
<tbody>
<tr>
<td>% of total procurement spend</td>
<td>76-100</td>
</tr>
</tbody>
</table>

Rationale for the coverage of your engagement
Iberdrola implements programmes to develop R&D&I through initiatives such as Perseo, our Corporate Venture Capital programme, dedicated to invest in innovative technologies and businesses that ensure the sustainability of the energy model. Turning to our support for entrepreneurs, in 2015 we launched the Supplier Innovation Programme, focused on three lines of action: providing access to the financing mechanisms, driving the joint creation of companies (spin-offs with suppliers) and fostering innovative purchases to small and medium-sized enterprises. Innovation activities in the renewable energies area focus primarily on improving the efficiency of existing technologies and their integration in the grid, in addition to developing new generation technologies and new designs or processes for projects in the pipeline or future projects mainly associated with offshore wind power.

Impact of the engagement and measures of success
Innovation is a strategic variable for the Iberdrola group and constitutes the main tool for guaranteeing the company’s sustainability, efficiency and competitiveness. In 2019, Iberdrola invested a total of 280 million euros, 5% higher than in 2018. And over the last 10 years this figure has grown by 202%, demonstrating the company’s decisive commitment to this sector. Iberdrola works and shall continue working with excellent and sustainable suppliers, and to do so, it establishes clear traction and measurement mechanisms with resources in the Purchasing Division allocated to these tasks. The Company likewise establishes personal objectives with its management team that are linked to continuously improving the sustainability ratios of its suppliers. Only in this way can Iberdrola continue to grow and serve the societies in which it is present and to which it is committed.

Comment
The process is decentralised and open. Decentralised because it is carried out independently within each business unit with the support and coordination provided by the Company’s Innovation, Environment and Quality Department, depending on the Chairman’s Area. Open because the Company views itself as a technology-driven entity and, as such, its aim is to involve the Group’s technology suppliers such as universities, technology centres and equipment manufacturers in the innovation process.

W2. Business impacts

(W2.1) Has your organization experienced any detrimental water-related impacts?
No
W2.2

(W2.2) In the reporting year, was your organization subject to any fines, enforcement orders, and/or other penalties for water-related regulatory violations?
No

W3. Procedures

W-EU3.1

(W-EU3.1) How does your organization identify and classify potential water pollutants associated with your business activities in the electric utilities sector that could have a detrimental impact on water ecosystems or human health?

All our facilities have a series of environmental aspects defined as those elements related to our activities, products or services that may affect the environment. These environmental aspects include any change to the environment—whether damaging or beneficial—caused totally or partially by the activities carried out at the facilities. Significant aspects are considered to be those that have or could have a significant impact on the environment. Iberdrola has identified a series of direct environmental impacts, namely those that have a direct influence on management, under normal operating conditions and in emergency situations. Indirect environmental aspects are considered to be those over which a reasonable degree of influence can be exercised, but whose management cannot be completely controlled.

Environmental aspects are identified and reviewed whenever any of the following circumstances occur:

- Introduction of new legal or regulatory requirements.
- Design changes or new operational methods.
- Implementation, modification, or shutdown of any activity, project or process.
- Change in the nature of raw materials.
- Occurrence of an environmental event or incident.

Similarly, environmental aspects are reviewed annually even if none of the preceding circumstances occur. Iberdrola's management review provides a record of the aspects that have been reassessed.

DISCHARGES:

The responsible for each facility which could have a detrimental impact on water periodically monitors the discharges to ensure that the limits set in current legislation and in its Integrated Environmental Authorisation are not exceeded at any time.

Each plant has a physical-chemical Effluent Treatment Plant (PTE) in order to guarantee the proper quality of the process wastewater before it is discharged (steam generator purges, equipment cleaning water and plant drainage without oily content, laboratory water, rejection from the reverse osmosis and electrodeionisation systems). Waste sanitary water and other effluents that might contain oily waste, and that have undergone a previous specific treatment (biological treatment by total oxidation and hydrocarbon separator, respectively) also arrive at this plant. The purges from the cooling towers are mixed with the effluent from the treatment plant in a final homogenisation reservoir before they are discharged into the receiving medium.

There is an emergency reservoir in which the discharge can be deviated instead of being sent to the receiving medium if there is a risk of the parameter limits not being met at the final discharge catch basin.

W-EU3.1a
(W-EU3.1a) Describe how your organization minimizes the adverse impacts of potential water pollutants associated with your activities in the electric utilities sector on water ecosystems or human health.

<table>
<thead>
<tr>
<th>Potential water pollutant</th>
<th>Description of water pollutant and potential impacts</th>
<th>Management procedures</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrocarbons</td>
<td>The following selection and identification criteria are used: • Under atmospheric emissions, one aspect is identified for each significant parameter in relation to the plant as a whole, rather than by individual area. This is because the impact of these substances on the environment is produced by their combined emissions as a whole. • Under discharges into water, two aspects are identified in association with each discharge point: i) One referring to the authorised maximum discharge volume, where applicable; ii) another referring to the physical/chemical load of the discharge, evaluating parameters with a limit value as a whole. The parameters are not assessed individually since the impact on the discharge is the sum of their combined effects, rather than of each individually. • Under waste, one aspect is identified for each set of waste according to its nature (hazardous waste, non-hazardous waste and domestic waste), assessing the final treatment of the waste (D or R), which is what actually generates the impact of this aspect. • Consumption includes primary and secondary fuels, given that their impact is similar for all fuels, generating a reduction in natural resources that is in proportion to their consumption. • Under noise, measurement points are determined according to the indications given in the Integrated Environmental Authorisation for each plant, both at the plant's perimeter and at its other auxiliary facilities. • Under discharges into the ground and underground water, the parameters identified in each authorisation are considered and compared against the applicable limit value or, in its absence, with the reference value indicated in the legislation in force.</td>
<td>Compliance with efficient quality standards. Measures to prevent spillage, leaching, and leakages. Community/stakeholder engagement. Emergency preparedness.</td>
<td>During 2019, and the previous year, several environmental actions (MA from the PAMA&Q (Environment and Quality Action Plan) were taken. To avoid the possible pollution of water with hydrocarbons that have been carried out. In this case, a hydrocarbon barrier was installed in the river with 100% success. The Group optimises the management of water and hazardous and non-hazardous waste via implemented systems which set targets and objectives for waste reduction, implementing best practices for water use and recycled materials, and other aspects. Iberdrola has an Environmental Management System, and prevention is one of its key objectives. To this end, multiple preventive measures have been implemented in all of the group's businesses. These measures are set out in organisational and technical manuals. Plans to minimise risk have been established in the group's various businesses (emergency guides and procedures, regular drills,etc.), as have reporting and environmental incident management systems; these are used to prevent and to control accidental spills and to inform the relevant authorities whenever necessary.</td>
</tr>
</tbody>
</table>

(W3.3) Does your organization undertake a water-related risk assessment?
Yes, water-related risks are assessed

(W3.3a) Select the options that best describe your procedures for identifying and assessing water-related risks.
Direct operations

Coverage
Full

Risk assessment procedure
Water risks are assessed in an environmental risk assessment

Frequency of assessment
More than once a year

How far into the future are risks considered?
More than 6 years

Type of tools and methods used
Tools on the market
Enterprise Risk Management
International methodologies
Databases
Other

Tools and methods used
WRI Aqueduct
Environmental Impact Assessment
Life Cycle Assessment
IPCC Climate Change Projections
FAO/AQUASTAT
Regional government databases
Internal company methods

Comment
Internal company methods: Iberdrola has developed a methodology based on international rules to value the probability of occurring an environmental accident, between other, the risk of spills on ground or water, or uncontrolled pollutant discharge. According to existing internal procedures, an annual review of structural risks must be performed and monitoring of checks are made quarterly. The group’s Risk Committee evaluates and monitors the main risks on a monthly basis. This Committee is supported by the also monthly Credit Risk and Market Risk Committees, which report to such Risk Committee. On at least a quarterly basis, the Audit and Risk Supervision Committee of the Board of Directors reviews the Group’s quarterly risk report. With regards to how far into the future are risks considered, it should be noted that although the impacts from climate change can already be seen in the short term (e.g.: greater intensity and frequency of climactic events in certain geographic areas), they are gradual and over relatively long periods (useful life of any new assets, i.e.: 30-40 years).

Supply chain

Coverage
Full

Risk assessment procedure
Water risks are assessed as part of other company-wide risk assessment system

Frequency of assessment
More than once a year

How far into the future are risks considered?
More than 6 years

Type of tools and methods used
Tools on the market
Enterprise Risk Management
International methodologies
Databases
Other

Tools and methods used
WRI Aqueduct
IPCC Climate Change Projections
FAO/AQUASTAT
Regional government databases
Internal company methods

Comment
Internal company methods: Iberdrola has developed a methodology based on international rules to value the probability of occurring an environmental accident, between other, the risk of spills on ground or water, or uncontrolled pollutant discharge. According to existing internal procedures, an annual review of structural risks must be performed and monitoring of checks are made quarterly. The group’s Risk Committee evaluates and monitors the main risks on a monthly basis. This Committee is supported by the also monthly Credit Risk and Market Risk Committees, which report to said Risk Committee. On at least a quarterly basis, the Audit and Risk Supervision Committee of the Board of Directors reviews the Group’s quarterly risk report. With regards to how far into the future are risks considered, it should be noted that although the impacts from climate change can already be seen in the short term (e.g.: greater intensity and frequency of climactic events in certain geographic areas), they are gradual and over relatively long periods (useful life of any new assets, i.e.: 30-40 years).
W3.3b

(W3.3b) Which of the following contextual issues are considered in your organization’s water-related risk assessments?

<table>
<thead>
<tr>
<th>Issue</th>
<th>Relevance & Inclusion</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water availability at a basin/catchment level</td>
<td>Relevant, always included</td>
<td>The World Resources Institute defines areas where per capita water supply drops below 1,700 m³/year as water-stressed areas, where disruptive water shortages can frequently occur. AQUASTAT is FAO’s global information system on water and agriculture, it collects, analyses, and publicizes information on water resources, water uses, and agricultural water management. By using this method, Iberdrola affirms that the Company DOES NOT have any plant located in any area considered to be water-stressed. We have implemented comprehensive database-monitoring systems at our facilities, and the data are collected through these systems and aggregated at corporate level in order to track the performance of the company with respect to such environment standards as well as with any other environmental regulations. Then, data is publicly reported on the Sustainability Report. To assess water availability at country and watershed level we use the Global Water Tool for Power Utilities, to obtain information of which facilities are located in water stressed areas. This information is vital to us as relates to water supply, which is critical to ensure continuity of our operations and also support us in our stakeholder’s engagement process to ensure compatibility of different water uses at watershed level. Also, Iberdrola maintains a close relationship with the local governments and the extractions and use of the water stressed environments is described.</td>
</tr>
<tr>
<td>Water quality at a basin/catchment level</td>
<td>Relevant, always included</td>
<td>The World Resources Institute defines areas where per capita water supply drops below 1,700 m³/year as water-stressed areas, where disruptive water shortages can frequently occur. AQUASTAT is FAO’s global information system on water and agriculture, it collects, analyses, and publicizes information on water resources, water uses, and agricultural water management. By using this method, Iberdrola affirms that the Company DOES NOT have any plant located in any area considered. We have implemented comprehensive database-monitoring systems at our facilities, and The data are collected through these systems and aggregated at corporate level in order to track the overall performance of the company with respect to such environment standards as well as with any other environmental regulations. Then, data is publicly reported on the Sustainability Report. To assess water quality at country and watershed level we use the Global Water Tool for Power Utilities, to obtain information of which facilities are located in water stressed areas. This information is vital to us as relates to water supply, which is critical to ensure continuity of our operations and also support us in our stakeholder’s engagement process to ensure compatibility of different water uses at watershed level.</td>
</tr>
<tr>
<td>Stakeholder conflicts concerning water resources at a basin/catchment level</td>
<td>Relevant, always included</td>
<td>Iberdrola takes various types of actions to minimise, mitigate, and offset unfavourable socioeconomic impacts that might be caused by its facilities. Various actions are taken to benefit the community, including: improvements in communication infrastructure, water supply or roadways, public lighting, creation of direct and indirect employment, professional training courses; activities to support entrepreneurs, etc. Iberdrola, by using an internal tool, characterizes the impacts of its activities, which allows to identify risks related to potential stakeholders’ conflicts (including conflicts concerning water resources), by identifying the severity of the potential impacts depending on whether the consequences of the impact have relevance on the social groups potentially affected. Significant service activities include support for professional formation and training in areas near Iberdrola’s facilities. The Company has developed a methodology for direct dialogue with its Stakeholders based on the AA2000 Assurance Standard, through the consultation and response processes described in indicators 102-43 and 102-44 in the Sustainability Report 2019. Focused specifically on the environmental aspects of its activities, Iberdrola has a mailbox – medioambiente@iberdrola.es – which is a channel of communication with stakeholders –accessible at www.iberdrola.com (on the “Contact” page, under the “Environment” section)– offering the ability to ask questions, provide questions, place concerns, make complaints, etc. This mailbox, included in the Environmental Management System of the Company, is certified under the ISO 14001 standard, and the management processes and handling of complaints received are audited annually. By way of supplement, Iberdrola may receive messages related to the environment through various channels that it maintains in social media, described on Iberdrola’s website in the “Press Room/Social Media section”, for which there is monthly monitoring.</td>
</tr>
<tr>
<td>Implications of water on your key commodities/raw materials</td>
<td>Relevant, always included</td>
<td>Materiality Analysis for Iberdrola by PWIC in 2019 has reflected a low risk associated with the supply of water (5% of significance). WBCSD Water Tool and WRI Aqueduct help to identify current and future water related risks to our supply chain. Furthermore, Iberdrola has measured the total water consumption linked to the activity of its entire supply chain. This helps Iberdrola to analyze and better identify the global water footprint linked to our value chain activity and decide about the actions to take with respect to those direct suppliers with the highest water consumption rates and the higher impact on Iberdrola’s activity.</td>
</tr>
<tr>
<td>Water-related regulatory frameworks</td>
<td>Relevant, always included</td>
<td>Relationships geared to the enactment of efficient regulatory provisions allowing for development of a competitive market in activities not subject to a natural monopoly and sufficient remuneration for regulated businesses. There is a continuous and constructive dialogue carried out with the internal knowledge of the company. As a general rule, we work for the respect for the principles of good regulation: proportionality, effectiveness and efficiency, responsibility and independence, consistency and credibility and, transparency and clarity. The WRI Aqueduct can also help identify potential areas subject to regulatory changes at the local level with regard to water. About future potential Regulatory changes, Iberdrola is acquainted with concerns and proposals of regulatory entities and puts forward its own opinions in legitimate defence of its interests and those of its shareholders, customers and users. It actively participates in public hearings by regulatory entities to ascertain opinions of the players involved in the processes, and in official processes of enactment of laws and regulations and monitoring of its application. The WRI Aqueduct can be used to identify those regions that are most likely to undergo legislative regulatory changes owing to water access problems. We have actively participated in industry association working groups, which analyzed emerging regulations including water related laws, i.e.: UNESA (Spanish Association of the Electricity Industry) and CEDE (Spanish Business Association) and Eurelectric (European Association of the Electricity Industry).</td>
</tr>
<tr>
<td>Status of ecosystems and habitats</td>
<td>Relevant, always included</td>
<td>Collection and discharges during 2019 were within the limits indicated by the relevant environmental permits, no anomalies were detected that could materially affect water resources or related habitats. Our activities can even be beneficial for the ecosystem. This is the case of Altiplana plants in Mexico, which discharge into the Garrapatas estuary, allowing it to recover its salinity and thus the specific characteristics of this habitat and the species of fauna and flora adapted thereto. In the case of Brazil, as a result of hydroelectric plants in several areas, there are many actions are carried out to refrain affected areas. With the help of ISO 14001, Iberdrola is able to annually publish a sustainability report besides identify and monitor local ecosystems and habitats that could be affected during an operation. Processes of autophylaxis and ecocide are derived from contamination. Iberdrola seeks to prevent contamination of soil and water systems which sustain life on earth. Amongst its main environmental goals is to prevent contamination from spills or discharges. To do this, in businesses across the Group implement numerous preventive actions, defined via the organisation and technical manuals, such as safety and containment measures to prevent damage. The yearly plans for each company in the Group include the provision of facilities for oil collection in the event of a massive spill in substations and transformer stations, the waterproofing of vats and/or the installation of containment barriers in sensitive environments.</td>
</tr>
<tr>
<td>Access to fully-functional, safely-managed WASH services for all employees</td>
<td>Relevant, always included</td>
<td>Health and safety of our employees is an indispensable goal for us, ensuring implementation of the human right to water and sanitation. This follows the UN Guiding Principles for Business and Human Rights and is aligned with UNEP Sustainable Development Goal number 6.</td>
</tr>
</tbody>
</table>

Other contextual issues, please specify: Please select
Customers
Relevant, always included
With Iberdrola's commitment with society, we are developing awareness campaigns on saving and water use efficiency. In 2019, 122,000 people visited the Energy Classroom near the wind farms in Spain. In the UK, there are also two visitor centres in the United Kingdom, located at Cambridgeshire and Southend-on-Sea, where visitors are received from the general public and from school groups. In 2019, Whitelee Errecorde more than 84,000 visitors. It is important noticing the collaboration with Hydrographic Foundations and other bodies in Spain to enable various activities near the hydroelectric reservoirs (sports events, support for reproduction of certain species, etc.), by adjusting flows at certain times. In the Hydraulic Network Generation, the implementation of AA1000 standards (2006), in accordance with the principles of inclusiveness, materiality, and responsiveness established in it, and of standards of Accountability's Assurance started in 2011. The Company has also made Campaigns in order to arising awareness given some tips related to water use such as, tips related to Washing Machine and Tumble Dryer and also Dishwasher. All the information and tips are available at https://www.iberdrola.es/en/energy-saving-tips. The main goal of these tips is to care for the environment at the same time that it will help to improve the relations with our customers, one of our more relevant stakeholder group, orienting and prioritizing its involvement in the identification of material issues. We engage with our customers through our commercial offices, our website, our sales managers, our customer service centres, social networks and mobile app; we also carry out surveys, forums and workshops with our customers.

Employees
Relevant, always included
Iberdrola uses social media as an effective tool to sensitize both its employees and society. We also engage with our employees through our Intranet, newsletter about sustainability and SDG related issues, contact mailbox, and since 2017, our internal social network (Yammer). We also organize forums, knowledge interviews, workshops, cluinc, etc. In 2012, our Global Internal Communication team started to link every new with its relevant SDGs; news were published on its internal page, on the website against climate change, that determine the business areas for more efficient and responsible use of domestic water in offices and control buildings amongst employees. The consumption decreased from 240,661 m3 in 2013 to 204,581 m3 in 2019 (decrease of 15 %)

Investors
Relevant, always included
Iberdrola supports transparency regarding water strategy of the company. Signatory of the Global Round Table on Climate Change. In March 2012 the Water CEO Mandate was signed. Iberdrola answers from the first year its creation the questionnaire CDP Water and all 2013 information is published in the Water CEO mandate webpage, available for all information.

Local communities
Relevant, always included
Iberdrola’s commitment to the local communities of the countries in which it operates makes shape through social activities in cooperation with governments, institutions and civil society organisations, as well as through sponsorships and patronage. The programmes are especially focused on social activity and economic development of the surroundings are especially significant. These programmes and activities are implemented in various complementary ways: – Directly by Iberdrola, through the Institutional Relations Division. – Directly by subsidiaries or affiliates (i.e. invested companies, i.e. those in which the company has equity interest) in their respective areas of activity. – Sponsorship and patronage activities, primarily through Fundación Iberdrola in Spain, ScottishPower Foundation in the United Kingdom, Avangrid Foundation in the United States, Instituto Neovialero in Brazil and Fundación Iberdrola in Mexico. – There are also two other organisations in the United Kingdom with a philanthropic purpose: The ScottishPower Energy People Trust and The ScottishPower Green Energy Trust, which carry out activities in their specific areas of competence. Actions taken to benefit the community: improvements in communication infrastructure; water supply or of environmental programmes; public lighting; creation of employment; programmes of professional training courses; the education of future engineers, the Teles Press hydroelectric power plant located in the middle of the Amazon Forest, one of the most important energy generation projects to date in Brazil, was launched in 2016. Over 40 social and environmental initiatives were set up. Most of these focused on enhancing healthcare and quality of life and the local indigenous communities. Please, visit page 292 of Iberdrola's Statement of Non-Financial Information. Sustainability Report 2019.

NGOs
Relevant, always included
As regards lobbying activities, Iberdrola is registered with the Transparency Register created by European institutions to provide adequate transparency to the relations of such institutions with companies, NGOs, citizens associations, think tanks, etc. The register was created by the European Parliament and the European Commission, and the Council of the European Union supports the initiative. Iberdrola’s record in such register can be found on the EU’s website. In its activities to influence public policies, Avangrid has made the financial contributions shown in the US register. And finally, a project for the dissemination of regulatory positions has been developed as part of Iberdrola’s transparency policy. Therefore, the company has made publicly available a compilation of Global Regulatory Positions, valid for all countries and businesses. The goal is for the regulatory positions advanced by Iberdrola to be transparent and well-known. Iberdrola has established a Vulnerable Customer Protection Procedure in order to ensure energy supply to economically disadvantaged citizens. These are supplies under subsidised rates (bono social) due to being pensioners or to the unemployment of all members of a family unit. Since 2015 Iberdrola has also been encouraging the signing of agreements with various public institutions and NGOs, consistent with its goal of protecting customers who cannot pay their gas and electricity bills. 100% of the domestic customers of Iberdrola reside in a locality protected by an agreement.

Other water users at a basin/catchment level
Relevant, always included
Impact studies, public consultations and work with stakeholders are performed at the majority of projects to keep the environmental impact as low as possible. Terrestrial/amphibious thermal power plant runs an ISO 14001 programme, the following environmental programmes: a particular noteworthy: development and implementation of artificial reeds near the plant to recover the habitat and fishing resources intended for local fishermen; and development of a biodegradable oil for the hydraulic systems in hydroelectric plants to prevent environmental damage caused by oil spilling into water. In Mexico, Iberdrola has participated in the construction and/or improvement of various recreational, educational, and health centers, as well as infrastructure improvement and expansions of potable-water and sewage networks.

Regulators
Relevant, always included
Iberdrola is acquainted with the concerns and proposals of regulatory entities and puts forward the Company’s own opinions in the legitimate defense of its interests and those of its shareholders, customers and users. It also actively participates both in “public hearings” held by regulatory entities in order to ascertain the opinions of the players involved in the processes prior to the revision of regulations or the determination of domestic energy policies, and in the official processes of enactment of the laws and regulations and the monitoring of their implementation. As a general rule, Iberdrola works for the approval of regulatory texts and respect for the principles of good regulation: proportionality, effectiveness and efficiency, responsibility and independence, consistency and credibility and, finally, transparency and clarity.

River basin management authorities
Relevant, always included
During the construction and operation of its facilities, Iberdrola carries out activities unrelated to its facilities without a specific commercial purpose, intended to meet the needs of the social environment, resolving needs in neighboring communities. For this purpose, Iberdrola cooperates with local authorities. At Escombreras CGGT, there has been a collaboration with the Public Administration, within the framework of the Association of the Valley of tailings, unifying the checks carried out by companies that pour into the body of water called The Green River, so that the water authorities can be informed of the results, and making it easier to control, as MEDOCC index and/or BOPA (presence or absence of species of benthic indicator of contamination), and CARLIT index and/or BENTHOS (presence or absence of species of macroalgae indicator of contamination).

Statutory special interest groups at a local level
Relevant, always included
Actions plans in 2019: Continuation of environmental biodiversity conservation programmes based on the impacts of plant operation: monitoring of fauna (ichthyofauna, herpetofauna, avifauna, mammalian fauna, entomofauna, etc.); monitoring of flora in reforested areas; water quality control; monitoring of erosive processes, etc. In the hydroelectric plants in Brazil. In Mexico the Garrapatas Estuary Rescue Project has been continued, improving the habitat, fostering indigenous species, and raising social awareness of the area’s rich biodiversity. The project is currently supported by the European Union and the Mexican Ministry of the Environment. The project aims to restore the natural habitat of the estuary and to promote sustainable use of the area. The project is being implemented by the Mexican National Commission for Protected Areas (CONANP) and the Federal Ministry of Environment and Sustainable Development (SEMARNAT). The project is expected to improve the livelihoods of local communities and contribute to the conservation of the area’s rich biodiversity.

Suppliers
Relevant, always included
Iberdrola tries to act as reference in water management for all its contractors and suppliers. There are commitments in the Purchasing Area to foster environmental responsibility and promote strict compliance by suppliers with contractual conditions and current legislation, with particular emphasis on respect for the principles established in the United Nations Global Compact. Iberdrola’s Procurement Division has a Global Supplier Management Model. None of our suppliers is exposed to water-related risks. We also have a supplier code of ethics that is available in English and Spanish. We also publish our code of ethics in our annual report, and it is available on our website. In 2019, we received and managed 65 email messages. During 2019, we received and managed 65 email messages.

Water utilities at a local level
Relevant, always included
Water related risks are managed through quality processes and periodic audits. Measures adopted to promote proper environmental behaviour of suppliers are based on the Procurement Policy, the Suppliers’ Code of Ethics, and the specific environmental clauses in the contracting terms of the Group. Subsequently, during the supply stage, the business environment, resolving needs in neighboring communities. For this purpose, Iberdrola cooperates with local authorities. At Escombreras CCGT, there has been a collaboration with the Public Administration, within the framework of the Association of the Valley of tailings, unifying the checks carried out by companies that pour into the body of water called The Green River, so that the water authorities can be informed of the results, and making it easier to control, as MEDOCC index and/or BOPA (presence or absence of species of benthic indicator of contamination), and CARLIT index and/or BENTHOS (presence or absence of species of macroalgae indicator of contamination).

Other stakeholder, please specify
Relevant, always included
Iberdrola makes grievance mechanisms and tools and the management processes associated therewith available to its Stakeholders. This is fully described in the “Grievance mechanisms for impact on society” section of the “Specific management approach to the Social Dimension” of this report. Iberdrola has an email mailbox at mastertube@iberdrola.es, which serves as a channel of communication with its Stakeholders, and which can be accessed in the contact section, offering the ability to ask questions, provide suggestions, place concerns or make complaints. The mailbox is included in the Environmental Management System of the company, and is certified under the ISO 14001 standard. During 2019, we received and managed 65 email messages.
Describe your organization’s process for identifying, assessing, and responding to water-related risks within your direct operations and other stages of your value chain.

"Common principles of action for the management of environmental risk and opportunities from the Organizations of the Group". This procedure is aligned to the company's guidelines from the Control and Risk Management's General Policy approved by the Board of Directors of Iberdrola SA. The main objective is to be able to have a global view of the level of environmental risk and to identify opportunities from them. Compliance with legal requirements and other environmental requirements, and the achievement of environmental objectives.

All environmental risks and opportunities assessed at each Iberdrola organisation shall be notified and recorded. Any documents that define the monitoring, assessment and measurement of these risks and opportunities shall also be identified.

Iberdrola’s Corporate Governance System is set to: i) improve the monitoring of all kind of risks (ESG approach) and ii) strength the Group’s commitment to all of the Sustainable Development Goals (“SDGs”), especially goals number 7 and number 13.

The Sustainable Development Committee of the Board is in charge of reviewing aspects relating to climate change, among other things, and receives regular reports. Our commitments and vision are reflected in the “Policy against climate change”.

As regards the process for identifying the risk of climate change, Iberdrola’s Board of Directors and senior management are committed to identifying and evaluating the risks of the group:

a) Ex ante: the risk tolerance levels are reviewed and approved annually through risk policies and limits that establish the qualitative and quantitative risk appetite at the level of the Group and at each of the principal businesses and corporate functions;

b) Ex post: at least one quarterly supervision of i) major risks and threats and the different exposures of the group and ii) compliance with the limits and indicators of risk policies take place.

In the assessment of the different environmental risks, Iberdrola may use the method described in "Methodology for environmental risk analysis" which the organisations use as a guide for determining their risks. In order to achieve a global perspective on the level of environmental risk, businesses notify any environmental risks they consider critical. This criticality shall be determined by the high probability of occurrence of the event as well as the severity of the consequences of such an event on the environment and its financial impact on the business.

Risk = Probability or frequency * consequence or danger

The probability of occurrence and the consequences of the event shall be assessed for each risk identified. The risks to be reported are those we shall call substantial and intolerable. The level of probability and the level of consequence shall be those determined by each business according to their risk assessment and must be documented.

Documentary structure that supports the internal procedures in place in Iberdrola, guiding the Group’s Comprehensive Risk System includes:

- The General Risk Control and Management Policy of the Iberdrola Group
- Corporate risk policies (e.g. Reputational Risk Framework Policy, Corporate Market Risk Policy, etc)
- Global businesses risk policies (for networks, renewable energy, liberalized and non-energy businesses)
- Local businesses risk policies (e.g. Risk Policy for the Networks Businesses of the Iberdrola Group in Brazil)
- The Comprehensive Risk Control and Management System
- Key Risk Map Guidelines
- Identification, Quantification and Monitoring of the Key Risks of the Iberdrola Group. Risk Register
- Quarterly Risk Report
- Quarterly Risk Policy Limits and Indicators Monitoring Report
- Key Risk Report (KRR)
- Risk Maps

W4. Risks and opportunities

W4.1
(W4.1) Have you identified any inherent water-related risks with the potential to have a substantive financial or strategic impact on your business?

Yes, both in direct operations and the rest of our value chain

(W4.1a) How does your organization define substantive financial or strategic impact on your business?

It is considered a substantial change that, owing to variations in the physical water quality and/or quantity parameters would cause a change in the operations of an Iberdrola facility with direct consumption, reducing the production capacity per year by a significant percentage. Based on the "Falkenmark Indicator" and "Water Stress Index", Iberdrola defines water stress as the amount of water <1700m3/(person* year). This method defines water scarcity in terms of the total water resources that are available to the population of a region; measuring scarcity as the amount of renewable freshwater that is available for each person each year. If the amount of renewable water in a country is below 1.700m3 per person per year, that country is said to be experiencing water stress. below 1000m3 it is said to be experiencing water scarcity; and below 500m3, absolute scarcity. So according with this definition Iberdrola has no power plants located in areas considered to have water stress.

Natural capital, understood as natural resources affected in the performance of the company's activities, is one of the fundamental assets in the Iberdrola group's creation of value and a fundamental asset for its Stakeholders.

During their respective life cycles, generation, transmission, distribution and sales activities cause interactions with various ecosystems, landscapes and species. Therefore, these ecosystems occupy a leading role in the business strategy through four priority lines of action:

- Mediation for the protection, preservation and sustainable use of natural capital.
- Information through impact assessment and the development and application of guidelines on biodiversity for new projects.
- Relations with Stakeholders, which seeks to consider the legitimate aspirations of the Stakeholders and develop action plans in accordance therewith.
- Commitment to internal and external training, awareness-raising and communication.

Various instruments are used to carry out these lines of action, including:

- Biodiversity Policy: applicable in all of the geographic areas in which the Iberdrola group does business, the basic principles of which are reflected in the lines of action.
- Stakeholder Relations Policy.
- Biodiversity plans based on avoiding and/or mitigating impact, restoring natural capital, assessing impact, Stakeholder relations and awareness-raising.
- Environmental management systems certified in accordance with ISO 14001 or EMAS standards, in order to prevent and control environmental risks.
- Corporate Environmental Footprint, enabling limitation of the group’s impact on biodiversity.

For more information, see Iberdrola and biodiversity web page, which sets out the management approach, strategies and progress in the activities conducted by the various businesses and regions in which Iberdrola has a presence.

For Iberdrola, substantive changes will be considered as those who can lead to any of the following impacts:

- Reduction in power generation: water availability (for example, cooling water) changes can impact our assets
- Social conflicts due to significant impacts in water usage.
- Operational changes due to regulatory changes.
- Environmental incidents

Liberalised business (including electricity generation) accounted for 24 % of Iberdrola's EBITDA in 2018. Hydropower generation accounted for 11.8 % of the total production in 2019. Substantive changes are defined as those events with potential impacts in Iberdrola Group’s EBITDA (decrease or increase of 5% of EBITDA).

Climate change has been a key element for defining the company’s strategy. Iberdrola treats climate change not only as a risk factor, but also (and mostly) as a source of organic growth during the transition towards a low-carbon economy. Every investment decision must be supported by an Investment Dossier with several related to climate change (future regulation, physical risks…) are included. Iberdrola has adopted TCFD’s risk terminology as the main reference.

Existing internal risks procedures define a 4-level classification of risks in terms of economic impact (up to 12 months): Very High >100M€, High 50-100M€, Medium 10-50M€ and Low <10M€.

Definition of substantive financial impact: For the purposes of CDP, risks posed by climate change that have the potential to generate key changes in operations, revenue or expenditure, including the 4 levels classification previously described.
Iberdrola has developed a specific climate change adaptation plan (including water related issues) and as part of it, Iberdrola is developing an analysis of different climate scenarios and specific studies for Iberdrola Business in order to anticipate future climate risks as a result of climate change and to increase the resilience of the company.

Please visit section E “Risk management and control systems” of Iberdrola's Corporate Governance Report 2019 for additional details.

W4.1b

(W4.1b) What is the total number of facilities exposed to water risks with the potential to have a substantive financial or strategic impact on your business, and what proportion of your company-wide facilities does this represent?

<table>
<thead>
<tr>
<th>Total number of facilities exposed to water risk</th>
<th>% company-wide facilities this represents</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Less than 1%</td>
<td>The main water risk for the hydroelectric and thermal generation of Iberdrola is the availability of water. Although the Iberdrola Group does not have plants located in areas considered to be water stressed, it is true that in recent years we have suffered from low water availability, which is why in some of the main regions where we operate, we decided to list the most representative power plants in each of the main Iberdrola regions, taking into account the most sensitive technologies to water stress, being in Spain and Brazil and the ones corresponding to the hydraulic generation and in Mexico to the thermal generation.</td>
</tr>
</tbody>
</table>

W4.1c

(W4.1c) By river basin, what is the number and proportion of facilities exposed to water risks that could have a substantive financial or strategic impact on your business, and what is the potential business impact associated with those facilities?

<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
<th>Spain</th>
<th>Douro</th>
</tr>
</thead>
</table>

Number of facilities exposed to water risk

1

% company-wide facilities this represents

Less than 1%

Production value for the metals & mining activities associated with these facilities

<Not Applicable>

% company’s annual electricity generation that could be affected by these facilities

Less than 1%

% company’s global oil & gas production volume that could be affected by these facilities

<Not Applicable>

% company’s total global revenue that could be affected

Less than 1%

Comment

We have considered Douro river basin because it has the largest hydraulic capacity installed with 6.8% of total generation capacity in 2019 (27 % of the Iberdrola’s hydraulic production and 2.6 % of the total production of the Group in 2019). Among the 17 hydroelectric plants that are located in the basin of the river Duero, we have considered Villarino de los Aires because it has the largest installed capacity with 856 MW Iberdrola Group has no power plants located in water-stressed areas.

W4.2

(W4.2) Provide details of identified risks in your direct operations with the potential to have a substantive financial or strategic impact on your business, and your response to those risks.

<table>
<thead>
<tr>
<th>Country/Area & River basin</th>
<th>United States of America</th>
<th>Other, please specify (All river basins where Iberdrola is located)</th>
</tr>
</thead>
</table>

Type of risk & Primary risk driver

Physical

Flooding

Primary potential impact

Closure of operations
Company-specific description
This is not a relevant risk for Iberdrola nowadays, because of the location of our facilities. Future floods may affect the operation of power stations, including the hydro capacity available leading to different global operational costs and stop for maintenance. It may also put electricity substations at risk.

Timeframe
1-3 years

Magnitude of potential impact
Low

Likelihood
Unlikely

Are you able to provide a potential financial impact figure?
Yes, an estimated range

Potential financial impact figure (currency)
<Not Applicable>

Potential financial impact figure - minimum (currency)
0

Potential financial impact figure - maximum (currency)
10000000

Explanation of financial impact
The magnitude has been determined using the 4 levels of risk described in section 4.1a. In this case, it's considered a low magnitude risk, so the cost will be < 10M€. At USA, Iberdrola has 204 MW of Combined Cycle plants (two) and one Cogeneration Power plant of 636 MW. If there were any impact that would alter its normal operation, the 7,521 MW of renewables installed in the rest of the country could ensure the quality of supply the proportion of business units affected.

Primary response to risk
Develop flood emergency plans

Description of response
Depending on the availability of water, climatic variation has the potential to impact our hydro operations, cooling requirements of thermal power stations, thermal efficiencies of our power plants, patterns of energy load growth and the robustness of our transmission and distribution infrastructure in response to more extreme weather variations. Iberdrola has developed a strong awareness of the physical risks associated with water availability. The assessment of risk is an ongoing activity, which is developed at various levels of risk control within the company. The risks are informed by individual assessment, industry experience and assistance from various expert groups.

Cost of response
40000000

Explanation of cost of response
As an example, in 2018 the cost associated to storms damages in USA was about 40 M€. Nevertheless, the facilities have been prepared and have predictive plans and systems to minimize impacts from these events. In particular, a resilience plan was launched in 2018 to harden grid infrastructure predominantly in the states of Maine and New York. Similar plant are in place in the rest of geographies. In 2019, Iberdrola has continued to expand and optimise our distribution networks to make them increasingly reliable and at the same time smart, making significant improvements in the quality indicators in all of the countries in which we provide service, despite various adverse meteorological situations, like in northeastern United States, with major storms during October 2019. In the USA, information and recommendations are provided regarding how to act in an emergency, such as adverse weather conditions, poisoning or health risks, as well as safety advice in case of storms or outages causing the collapse of lines or other equipment. The Storm Safety Information publication provides safety information regarding potential public safety risks. CMP also has an Outreach Campaign directed toward at-risk groups such as schoolchildren, safety teams, contractors and emergency personnel.

Country/Area & River basin
Spain

Type of risk & Primary risk driver
Regulatory

Primary potential impact
Brand damage

Company-specific description
The financial crisis has taken first importance during many years in the political scenario; new policies on climate change and nuclear generation (after Fukushima) are uncertain. Changes in environmental regulations during 2013 made uncertain the future for electric utilities in Spain. Changes in regulations with less requirements may affect the Iberdrola Group's business as soon as other companies with lower financial, social and environmental commitment may gain competitive advantage reducing the Group's turnover. It can also lead to an increase in our insurance premiums.

Timeframe
1-3 years

Magnitude of potential impact
Low

Likelihood
Likely

Are you able to provide a potential financial impact figure?
Yes, an estimated range

Potential financial impact figure (currency)
<Not Applicable>
Potential financial impact figure - minimum (currency)
0

Potential financial impact figure - maximum (currency)
10000000

Explanation of financial impact
The magnitude has been determined using the 4 levels of risk described in section 4.1a. In this case, it's considered a low magnitude risk, so the cost will be <10M€.

Primary response to risk
Increase insurance coverage

Description of response
In relation to the insurance cover, Iberdrola has international insurance programmes to cover equity (insurance for material damages, machinery breakdowns, loss of profits, damages from natural disasters and risks arising from construction work) and third-party liabilities (general civil liability, liability for environmental risks, professional civil liability, etc.).

Cost of response
8000000

Explanation of cost of response
The cost to cope with this risk in 2019 corresponds to the described insurances.

Country/Area & River basin

| Spain | Other, please specify (All basins where Iberdrola is located) |

Type of risk & Primary risk driver

| Physical | Declining water quality |

Primary potential impact
Increased operating costs

Company-specific description
Access to water resources is essential to the development of any population and business. Even if Iberdrola’s facilities are located in an excellent strategic position not being object of water risk in the short term, we are aware that pollution and poor water quality could lead to a possible damage to plants, reducing production, increasing the stops for maintenance or even close.

Timeframe
4-6 years

Likelihood
Likely

Are you able to provide a potential financial impact figure?
Yes, an estimated range

Potential financial impact figure (currency)
<Not Applicable>

Potential financial impact figure - minimum (currency)
0

Potential financial impact figure - maximum (currency)
10000000

Explanation of financial impact
The magnitude has been determined using the 4 levels of risk described in section 4.1a. In this case, it's considered a low magnitude risk, so the cost will be <10 M€. All the thermal power-generation plants in Spain have treatment systems that treat residual water before discharging it into the natural receptor environment. Water from the process undergoes physicochemical treatment, which includes the separation of hydrocarbons. Wastewater is treated in compact treatment systems with biological aerobic processes.

Primary response to risk
Increase investment in new technology

Description of response
As regards the treatment of discharges, at Velilla power plant, in Spain, biological treatment for desulphurisation commenced a few years ago at the Effluents Treatment Plant, to reduce nitrides and nitrates in the discharge. An exhaustive inspection was performed some years ago of the water used in the direct production process at the Cofrentes nuclear power plant. All of the effluents from the water-steam cycle, from the reactor coolants, and from the standby systems are processed in the liquid waste treatment system and are returned to the cycle for reuse. We monitor our Combined Cycle plants constantly to ensure that the limits provided in its Integrated Environmental Authorisation are not exceeded by controlling its discharges on a regular basis, as provided in its Discharge Control Quality Assurance Plan. They also have an Effluent Treatment Plant to ensure the quality of the process waste water prior to its discharge.

Cost of response
5000000

Explanation of cost of response
The cost to cope with this risk in 2019 corresponds to purchase costs derived from effluent treatment equipment.
Type of risk & Primary risk driver

| Regulatory | Increased difficulty in obtaining withdrawals/operations permit |

Primary potential impact

Constraint to growth

Company-specific description

Tightening on regulations and standards will require the Company to invest in complying with high environmental impact studies, obtaining licences, permits and other mandatory authorisations. Operational impacts related to disruptions in business operations will increase due to more environmental restrictions to new plants. Iberdrola may be subject to legal claims for future damages, or penalties derived from waste, emissions, or spillages which might affect the Group's image and reputation.

Timeframe

Current up to one year

Magnitude of potential impact

Low

Likelihood

Likely

Are you able to provide a potential financial impact figure?

Yes, an estimated range

Potential financial impact figure (currency)

<Not Applicable>

Potential financial impact figure - minimum (currency)

0

Potential financial impact figure - maximum (currency)

10000000

Explanation of financial impact

The magnitude has been determined using the 4 levels of risk described in section 4.1a. In this case, it's considered a low magnitude risk, so the cost will be < 10M€

Primary response to risk

Engage with regulators/policymakers

Description of response

Actions: - Consultation and official formalities with various regulatory entities. - Relationship through industry organisations. - Meetings and direct contacts. - Participation in workshops, events, debates, etc. - Preparation of informational memos.

Cost of response

10000000

Explanation of cost of response

The cost to cope with this risk in 2019 is a cost percentage of the investment in new infrastructure. In order to prevent any impact, Iberdrola relies on transparency and environmental management systems. 100% Iberdrola hydro generation facilities in Spain are under ISO 14000 System: minimising environmental risks, thus improving the Company's environmental management in line with its commitment to environmental protection.

Country/Area & River basin

| Spain | Other, please specify (All basins where Iberdrola is located) |

Type of risk & Primary risk driver

| Physical |Severe weather events |

Primary potential impact

Reduced revenues from lower sales/output

Company-specific description

Generation output of Iberdrola's hydro power plants could be affected by negative changes in weather conditions, due to higher or lower water inflows. The lower the rain, the lower the production (if reserves are kept constant). The potential impact is not only the volatility every year Generation output of Iberdrola's hydro power plants could be affected by negative changes in weather conditions, due to higher or lower water inflows. The lower the rain, the lower the production (if reserves are kept constant). The potential impact is not only the volatility every year (vs the average), but also the potential decrease in the long term of what it is considered as average production. In the medium to long term, years with lower than average water resource are offset by years with above-average water resource. The risk of water resource in a given year basically affects the Renewables business in Spain, and to a lesser extent Brazil. In Spain, almost 40% of the total installed capacity of Iberdrola is hydro.

Timeframe

1-3 years

Magnitude of potential impact

Medium-high

Likelihood

About as likely as not

Are you able to provide a potential financial impact figure?

Yes, an estimated range
Potential financial impact figure (currency)
<Not Applicable>

Potential financial impact figure - minimum (currency)
50000000

Potential financial impact figure - maximum (currency)
100000000

Explanation of financial impact
The changes in output from a dry year to a wet year with respect to the average value can be up to -4,000 GWh in a dry year and +5,000 GWh respectively in Spain, and the variability would be between an estimated (figure for 12 months) -150 M€ and +190 million M€. Using methods such as WBCSD Global Water tool, WRI Aqueduct, FAO/AQUASTAT and internal company knowledge, Iberdrola can easily identifies current and future water needs and availability where it operates, such as water-stress areas (our main water risks are water-stress areas), where Iberdrola has not presence, Flood Occurrence, access to water or drought severity.

Primary response to risk
Adopt water efficiency, water reuse, recycling and conservation practices

Description of response
The Group considers that the resource risk is mitigated by the large number of renewable power plants available and their geographical diversification. In the medium to long term, years with lower than average resource are offset by years with above-average resource. Iberdrola expects to invest 13,3 €bn in 2018-2022, in renewables business, focusing in diversification of assets and operational efficiency, that are main actions to deal with risks from lower outputs in hydro power plants.

Cost of response
13300000

Explanation of cost of response
Iberdrola expects to invest 13,3 €bn in 2018-2022,

Country/Area & River basin
Spain, Other, please specify (All river basins where Iberdrola is located)

Type of risk & Primary risk driver
Physical, Other, please specify (Changes in precipitation patterns)

Primary potential impact
Other, please specify (Decreased revenues as a result of future levels of annual water inflows lower than the ones today)

Company-specific description
In 2019, 24% of the reported EBITDA of the Group came from the Renewables Business, and circa a third of that contribution was booked in Spain. In that country the Group accounts for a hydro portfolio of 9.7 TW, which produced 37% of the total hydro energy in Spain in 2019. Hydro is a natural resource, cheap but volatile. Iberdrola has to some extend the capacity to storage energy in the form of reservoirs, with rain and snowbreak being the main inflows. The use of storage water to produce energy should be the outflow of the reservoirs. The lower the rain, the lower the production (if reserves are kept constant). Keeping market prices out of the analysis, lower rain means lower GWh injected into the grid, and therefore lower revenues. The risk of water resource basically affects the Renewables business in Spain, and to a lesser extent Brazil (3 TW of installed capacity).

Timeframe
1-3 years

Magnitude of potential impact
High

Likelihood
About as likely as not

Are you able to provide a potential financial impact figure?
Yes, an estimated range

Potential financial impact figure (currency)
<Not Applicable>

Potential financial impact figure - minimum (currency)
20000000

Potential financial impact figure - maximum (currency)
150000000

Explanation of financial impact
The potential impact is not only the volatility every year (vs the historical average), but also the potential decrease in the long term of what it is considered as average production. In Spain, for illustrative purposes, a drop of 5% in production (0.5 TWh, net of taxes and excluding pumping) would have an estimated mid-term impact on gross margin of approximately Euros 20 million. In terms of annual volatility in Spain, the changes in output from a dry year to a wet year with respect to the average value can be up to -4,000 GWh in a dry year and +5,000 GWh respectively, and the variability would be between an estimated Euros (risk) -150 million and Euros (upside) +190 million.

Primary response to risk
Other, please specify (Insurance policies)

Description of response
Insurance (transfer) is not considered an efficient risk mitigation strategy for this risk, and therefore main strategy is accepting the risk (on an annual basis). In the medium to long term, years with lower than average water resource are offset by years with above-average water resource, and the Group is investing heavily in new renewables assets to deal with this risk (generation of new assets could replace lower hydro production). Geographical diversification (not only at country level, but also at basin level) as well as the hyper-annual storage capacity, helps to mitigate the risk. For illustrative purposes, a potential permanent replacement of 0.5 TWh of lower hydro production in the medium term with new wind and FV could require to spend slightly more than 200 €M in 105 MW of wind farms and 135 MW of FV installations. Iberdrola is Spanish leader in hydro capacity in reservoirs, many of them designed as hyper-annual capacity (that is, able to manage uncertainty in hydro inflows for a period of several years,
by storing water in wet years that lately might be used to produce energy in dry years). Iberdrola hydro reservoirs have a capacity equivalent to 11.3 TWh, of which 6.3 TWh corresponds to hyper-annual reservoirs. Also it must be noted that the Group manages a portfolio of 27 TW of generation capacity in Spain, with different technologies. An integrated management allows more flexibility. Furthermore, constant monitoring of volumes and exposure are carried out by the Market Risk Department.

Cost of response
13300000

Explanation of cost of response

Country/Area & River basin

Spain Other, please specify (All river basins where Iberdrola is located)

Type of risk & Primary risk driver

Physical Other, please specify (Changes in precipitation patterns and extreme variability in weather patterns)

Primary potential impact

Other, please specify (Increase of the base of operating costs (wages and third parties, booked between Gross Margin and EBITDA) as a result of climate change)

Company-specific description

Iberdrola is an industrial company, with a very relevant asset base in its Balance Sheet. In 2019 distributed 233 TWh of electricity and generated 40 TWh, and managed 31 millions of points of supply. To run that asset base as required, Iberdrola incurred in 2019 in 4.3 €bn of operating costs (salaries + third party services). This figure is relevant, since consolidated EBITDA of the Group amounted to 10.1 €bn. Change in the base of operating costs could imply a permanent reduction of EBITDA. Climate chance could imply lower revenues (lower market prices, lower efficiency….) and also higher costs (ie: higher operation and maintenance costs required i) to cope with the negative effects of global warm and ii) proactively increase resilience of the assets).

Timeframe

1-3 years

Magnitude of potential impact

High

Likelihood

More likely than not

Are you able to provide a potential financial impact figure?

Yes, an estimated range

Potential financial impact figure (currency)

<Not Applicable>

Potential financial impact figure - minimum (currency)

6500000

Potential financial impact figure - maximum (currency)

13000000

Explanation of financial impact

Minimum and maximum figures calculated as 1.5% and 3.0% of increase of the existing O&M base cost (4.3 €bn). The increase should not emerge in one specific year, but rather progressively. The values should be understood as proxies of potential impacts, for illustrative purposes, and based on qualitative analysis.

Primary response to risk

Other, please specify (O&M costs management)

Description of response

The increase in the O&M costs already mentioned could be understood as the cost to response to the risk, since if the Group does not control costs and proactively implement improvement measures, the increase of the cost base of the Group could be higher. The following aspects help to mitigate the impact and manage the risk: • Diversification of assets, by geography and technology (ie: a higher demand of preventive maintenance due to higher temperatures could occur in US, but not in UK) • Cost and engineering contingencies considered in the Investment Dossiers every time a new asset is approved • The Group's experience in managing climate risks, in regions currently exposed to relatively extreme weather conditions (ie: the Group has been dealing with this for decades, previous to the global concern about climate change) • Improvement in technologies could allow increases in efficiency that could absorb negative impacts • The Group's future assets (designed to cope with climate change risks) and not current assets will the installations more severely impacted, since assets are progressively renewed when they reach the end of their useful life • Development of new capabilities in weather forecasting • Likely recovery of the bulk of the costs in the networks business through regulated tariffs (multi annual tariff reviews). • The capacity to adapt through training • Insurance cover

Cost of response

4300000

Explanation of cost of response

W4.2a

(W4.2a) Provide details of risks identified within your value chain (beyond direct operations) with the potential to have a substantive financial or strategic impact on your business, and your response to those risks.

Country/Area & River basin

Spain Other, please specify (All basins where Iberdrola is located)
Stage of value chain
Supply chain

Type of risk & Primary risk driver

<table>
<thead>
<tr>
<th>Regulatory</th>
<th>Changed product standards</th>
</tr>
</thead>
</table>

Primary potential impact
Increased operating costs

Company-specific description
As a consequence of the fulfilment of future new standards by the suppliers and the facilities adaptation to these new raw materials may increase operational costs.

Timeframe
More than 6 years

Magnitude of potential impact
Medium-low

Likelihood
Unlikely

Are you able to provide a potential financial impact figure?
Yes, a single figure estimate

Potential financial impact figure (currency)
1

Potential financial impact figure - minimum (currency)
<Not Applicable>

Potential financial impact figure - maximum (currency)
<Not Applicable>

Explanation of financial impact
The magnitude has been set using a qualitative 5 point scale from High to Low. Iberdrola is committed to research, development and innovation, which are strategic variables for confronting the challenges facing the Company.

Primary response to risk
Please select

Description of response
Iberdrola is the most innovative Spanish utility, the second-most in Europe and the fourth-most in the world with the largest volume of resources dedicated to R&D&I. During 2019, R&D&I investment was 280 million euros. Fostering the Supplier Innovation Programme to encourage the joint creation of companies and simplify access to financing mechanisms. We value building strong relationships with our diverse suppliers; these relationships give us the competitive advantage as being one of the best in the utility market. Through our efforts, we are able to seek out suppliers who are capable of providing the best service in terms of cost, quality and delivery. We have in place a contracting and a relationship with suppliers policies. The cost to cope with this risk is based on our R&D&I investment.

Cost of response
12300000

Explanation of cost of response
We are in a continuous improvement to adapt all our facilities by implementation of an innovative management and technology strategy over the last decade, which has led us to become a world leader and benchmark in R&D&I, thanks to the successful implementation of a common model in all areas, collaboration with our technology providers and the promotion of culture of innovation.

Country/Area & River basin
Spain

Stage of value chain
Supply chain

Type of risk & Primary risk driver

<table>
<thead>
<tr>
<th>Reputation & markets</th>
<th>Negative media coverage</th>
</tr>
</thead>
</table>

Primary potential impact
Company brand damage

Company-specific description
Our company can be involved in a problem of a supplier, despite being totally outside them. This may result in a damage on the image and reputation of the Group, and finally in a reduction in capital availability.

Timeframe
More than 6 years

Magnitude of potential impact
Medium-low

Likelihood
Unlikely

Are you able to provide a potential financial impact figure?
Yes, a single figure estimate
Potential financial impact figure (currency)
2
Potential financial impact figure - minimum (currency)
<Not Applicable>
Potential financial impact figure - maximum (currency)
<Not Applicable>
Explanation of financial impact
The magnitude has been set using a qualitative 5 point scale from High to Low. Our company can be involved in a problem of a supplier, despite being totally outside them.

Primary response to risk
Please select

Description of response
The objective of this measure is to improve engagement with suppliers. Iberdrola has developed a "Global Supplier Management Model", now called Supplier Sustainability Assessment (including a Total Supplier Management System) that enables the company to register and classify its suppliers. Tenders by Iberdrola include contractual conditions requiring that the parties act within stringent levels of security, occupational risk prevention, and respect for the environment. Once the suppliers have registered in our Global Suppliers Management System, suppliers are evaluated on the basis of their technical and production capabilities, among other things, and their status in the following areas is weighted: - Quality - Safety and occupational risk prevention - Environment - Social Responsibility - Economic and financial condition - Prior references - Anti-bribery & Corruption assessment. The status of suppliers as regards sustainability, the first four areas mentioned above, has a weight of 40% in the total score.

Cost of response
1000000
Explanation of cost of response
To improve the status of suppliers with a lesser performance in this area, involvement, awareness-raising and motivation activities are conducted throughout the year, in order for suppliers to achieve certification in quality, the environment and/or occupational risk prevention. The cost to cope with this risk in 2019 is related to Environmental Management System costs and Supplier Management cost.

W4.3

(W4.3) Have you identified any water-related opportunities with the potential to have a substantive financial or strategic impact on your business?
Yes, we have identified opportunities, and some/all are being realized

W4.3a

(W4.3a) Provide details of opportunities currently being realized that could have a substantive financial or strategic impact on your business.

Type of opportunity
Markets

Primary water-related opportunity
Stronger competitive advantage

Company-specific description & strategy to realize opportunity
As a leader in renewable energies, Iberdrola directs its strategy to be carbon neutral by 2050. To achieve this, it has been turning the strategy of its investments for several years, prioritizing the construction of renewable generation facilities, in order to diversify its greener mix, investing in all renewable technologies. The European Investment Bank (EIB) is financing one of the most important energy sector initiatives in Portuguese history. The EU bank has provided a € 650 million loan to Iberdrola to support a major hydro electrical project that will increase energy storage capacity in the EU, to provide services to the Iberian grid operators and ultimately facilitate the increase of the renewable share of the Portuguese energy mix. This investment will reduce the dependence of the Iberian market on fossil energy as well as CO2 emissions. Through this agreement with Iberdrola, the EIB is contributing to the construction of three new large dams and hydropower plants, including a pump storage plant, which will be located on the Tâmega and the Torno rivers, in northern Portugal. With an investment of around EUR 1.5bn, the new Iberdrola's new infrastructure will have a total capacity of 1,158 MW and will start operating in 2023. To advance the project's implementation, the EIB and Iberdrola signed a € 500 million loan, the first tranche of the total € 650 million in funds approved to finance this project.

Estimated timeframe for realization
4 to 6 years

Magnitude of potential financial impact
High

Are you able to provide a potential financial impact figure?
Yes, a single figure estimate

Potential financial impact figure (currency)
65000000

Potential financial impact figure – minimum (currency)
<Not Applicable>

Potential financial impact figure – maximum (currency)
<Not Applicable>

Explanation of financial impact
The potential financial impact has been estimated from hydraulic outputs / hydraulic GWh obtained in 2019. 65,000,000 is the potential financial impact of the plant during a year with an average production of 1,760 GWh. The Portuguese and Spanish electricity markets will benefit from the new infrastructure. By increasing generation and storage capacity, the new plants will provide more flexibility and security of energy supply on the Iberian electricity market. The dams (Alto Tâmega, Dailões and Gouvães) are located in the Douro River Basin and are expected to provide an average of 1,760 GWh per year to the Iberian market.
Type of opportunity
Efficiency

Primary water-related opportunity
Improved water efficiency in operations

Company-specific description & strategy to realize opportunity
Wind farms are not always close to urbanized areas with public sewer service, so it is a way to cover the basic needs of water supply that is not directed to human consumption. Rainwater collectors may be installed in areas where rain is usually high. At some of ScottishPower's wind farms, the control buildings have rooftop rainwater collectors and storage tanks to use the water.

Estimated timeframe for realization
Current - up to 1 year

Magnitude of potential financial impact
Low-medium

Are you able to provide a potential financial impact figure?
Yes, a single figure estimate

Potential financial impact figure (currency)
0

Potential financial impact figure – minimum (currency)
<Not Applicable>

Potential financial impact figure – maximum (currency)
<Not Applicable>

Explanation of financial impact
No volume data currently collected for rainwater harvesting. We have requested meters to be installed on rainwater harvesting units, however this needs to be considered in the overall ScottishPower General Services programme of works. We will continue to pursue this in 2020.

Type of opportunity
Markets

Primary water-related opportunity
Stronger competitive advantage

Company-specific description & strategy to realize opportunity
As a leader in renewable energies, Iberdrola directs its strategy to be carbon neutral by 2050. To achieve this, it has been turning the strategy of its investments for several years, prioritizing the construction of renewable generation facilities. In order to diversify its greener mix, investing in all renewable technologies. Offshore wind farms allow produce electricity without emitting GHG, having a carbon management and a competitive advantage over other utilities. Innovation and R&D are important aspects to consider in the construction of such plants. The electrification of the economy is asserted as the only solution to confront both challenges, and in this context we are going to intensify our investments in renewable energies, in energy storage at hydroelectric pumping plants, among others. This type of projects give value to the brand and a stronger competitive advantage. EAST ANGLIA with an installed power capacity of 714 MW will provide clean energy to nearly 600,000 British homes from 2020. East Anglia ONE is the largest renewable energy project undertaken by a Spanish company ever, and entails an investment of over 3 billion euros.

Estimated timeframe for realization
1 to 3 years

Magnitude of potential financial impact
High

Are you able to provide a potential financial impact figure?
Yes, a single figure estimate

Potential financial impact figure (currency)
3000000000

Potential financial impact figure – minimum (currency)
<Not Applicable>

Potential financial impact figure – maximum (currency)
<Not Applicable>

Explanation of financial impact
The potential financial impact is the total investment for the project, over 3.000 millions of euros. With an installed power capacity of 714 MW, it will provide clean energy to nearly 630,000 British homes from 2020. East Anglia ONE is the largest renewable energy project undertaken by a Spanish company ever. It is an opportunity to increase the supply of green energy under guarantee of origin.

Type of opportunity
Efficiency

Primary water-related opportunity
Improved water efficiency in operations

Company-specific description & strategy to realize opportunity
Opportunity: Operating efficiency and flexibility. Following completion of the HOREX project a few years ago, work continued on the line of research into the chemical expansion of concrete with the PREXES project, focusing on development of a model to predict expansion in hydraulic concrete structures.

Estimated timeframe for realization
Current - up to 1 year

Magnitude of potential financial impact
Low-medium

Are you able to provide a potential financial impact figure?
Yes, a single figure estimate
Potential financial impact figure (currency)
500000

Potential financial impact figure – minimum (currency)
<Not Applicable>

Potential financial impact figure – maximum (currency)
<Not Applicable>

Explanation of financial impact
The total budget for the project was 500,000 €. The general objective of the project is to investigate and understand the distribution and degree of evolution of the expansive phenomena in the concrete of dams, due to the development of arid-alkali reactions, to subsequently develop a predictive mathematical model sufficiently reliable to determine and to evaluate the future damages of the concrete, so that the capacity of detection of these anomalies in the hydraulic dams is increased and thus to increase the security and useful life of the same ones.

Type of opportunity
Products and services

Primary water-related opportunity
New R&D opportunities

Company-specific description & strategy to realize opportunity
FILTRACIONES project, which focuses on the development of a new methodology for efficient and safety inspections on water channels.

Estimated timeframe for realization
Current - up to 1 year

Magnitude of potential financial impact
Low

Are you able to provide a potential financial impact figure?
Yes, a single figure estimate

Potential financial impact figure (currency)
100

Potential financial impact figure – minimum (currency)
<Not Applicable>

Potential financial impact figure – maximum (currency)
<Not Applicable>

Explanation of financial impact
The financial impact is reached once the R&D project is developed. So we consider 100% of benefits. Significant progress made on the Filtraciones Project, with the development of a new methodology for efficiently inspecting water channels.

W5. Facility-level water accounting

W5.1

(W5.1) For each facility referenced in W4.1c, provide coordinates, water accounting data, and a comparison with the previous reporting year.

Facility reference number
Facility 1

Facility name (optional)
Villarino de los Aires (Salamanca)

Country/Area & River basin
Spain
Douro

Latitude
41.254418

Longitude
-6.320833

Located in area with water stress
No

Primary power generation source for your electricity generation at this facility
Hydropower

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
455000

Comparison of total withdrawals with previous reporting year
Lower
Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
455000
Withdrawals from brackish surface water/seawater
0
Withdrawals from groundwater - renewable
0
Withdrawals from groundwater - non-renewable
0
Withdrawals from produced/entrained water
0
Withdrawals from third party sources
0
Total water discharges at this facility (megaliters/year)
455000
Comparison of total discharges with previous reporting year
Lower
Discharges to fresh surface water
455000
Discharges to brackish surface water/seawater
0
Discharges to groundwater
0
Discharges to third party destinations
0
Total water consumption at this facility (megaliters/year)
0
Comparison of total consumption with previous reporting year
About the same
Please explain
All the water collected comes from the basin of the Douro River, freshwater. It is lower than the previous year, due to a lower production (37%).

Facility reference number
Facility 2
Facility name (optional)
Itapebi
Country/Area & River basin
Brazil Jequitinhonha

Latitude
-15.968683
Longitude
-39.586215
Located in area with water stress
No
Primary power generation source for your electricity generation at this facility
Hydropower
Oil & gas sector business division
<Not Applicable>
Total water withdrawals at this facility (megaliters/year)
1626000
Comparison of total withdrawals with previous reporting year
Much lower
Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
1626000
Withdrawals from brackish surface water/seawater
0
Withdrawals from groundwater - renewable
0
Withdrawals from groundwater - non-renewable
0
Withdrawals from produced/entrained water
0
Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
1626000

Comparison of total discharges with previous reporting year
Much lower

Discharges to fresh surface water
1626000

Discharges to brackish surface water/seawater
0

Discharges to groundwater
0

Discharges to third party destinations
0

Total water consumption at this facility (megaliters/year)
0

Comparison of total consumption with previous reporting year
Much lower

Please explain
All the water collected comes from the basin of the Jequitinhonha River, freshwater. It is lower than the previous year due to a decrease in production.

Facility reference number
Facility 3

Facility name (optional)
Tamazunchale, San Luis Potosi

Country/Area & River basin
Mexico

Other, please specify (Moctezuma, San Luis Potosi)

Latitude
21.254315

Longitude
-98.790918

Located in area with water stress
No

Primary power generation source for your electricity generation at this facility
Gas

Oil & gas sector business division
<Not Applicable>

Total water withdrawals at this facility (megaliters/year)
9717.56

Comparison of total withdrawals with previous reporting year
Higher

Withdrawals from fresh surface water, including rainwater, water from wetlands, rivers and lakes
9717.56

Withdrawals from brackish surface water/seawater
0

Withdrawals from groundwater - renewable
0

Withdrawals from groundwater - non-renewable
0

Withdrawals from produced/entrained water
0

Withdrawals from third party sources
0

Total water discharges at this facility (megaliters/year)
9270.89

Comparison of total discharges with previous reporting year
Higher

Discharges to fresh surface water
9270.89

Discharges to brackish surface water/seawater
Discharges to groundwater: 0
Discharges to third party destinations: 0
Total water consumption at this facility (megaliters/year): 446.67
Comparison of total consumption with previous reporting year: Higher

Please explain:
In 2019, total withdrawals of water were 9,717.56 megaliters. From such number: 446,67 megaliters were destined for auxiliary processes and services, 9,270.89 were discharged (of which 7,085.23 was evaporated). The increase of these numbers compared to 2018 is due to the increase in electricity generation (4% increase).

<table>
<thead>
<tr>
<th>W5.1a</th>
<th>For the facilities referenced in W5.1, what proportion of water accounting data has been externally verified?</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Water withdrawals – total volumes</td>
</tr>
<tr>
<td></td>
<td>% verified</td>
</tr>
<tr>
<td></td>
<td>76-100</td>
</tr>
<tr>
<td></td>
<td>What standard and methodology was used?</td>
</tr>
<tr>
<td></td>
<td>PwC verified this data according to GRI-4 and World Business Council.</td>
</tr>
<tr>
<td></td>
<td>Iberdrola Group has a solid Environmental Management Systems (EMS) and the target is the continuous improvement, it is demonstrated through different certifications and verifications. EMS: minimizing environmental risks, thus improving the company's environmental management in line with its commitment to environmental protection.</td>
</tr>
<tr>
<td></td>
<td>Water withdrawals – volume by source</td>
</tr>
<tr>
<td></td>
<td>% verified</td>
</tr>
<tr>
<td></td>
<td>76-100</td>
</tr>
<tr>
<td></td>
<td>What standard and methodology was used?</td>
</tr>
<tr>
<td></td>
<td>PwC verified this data according to GRI-4 and World Business Council.</td>
</tr>
<tr>
<td></td>
<td>Iberdrola Group has a solid Environmental Management Systems (EMS) and the target is the continuous improvement, it is demonstrated through different certifications and verifications. EMS: minimizing environmental risks, thus improving the company's environmental management in line with its commitment to environmental protection.</td>
</tr>
<tr>
<td></td>
<td>Water withdrawals – quality</td>
</tr>
<tr>
<td></td>
<td>% verified</td>
</tr>
<tr>
<td></td>
<td>76-100</td>
</tr>
<tr>
<td></td>
<td>What standard and methodology was used?</td>
</tr>
<tr>
<td></td>
<td>PwC verified this data according to GRI-4 and World Business Council.</td>
</tr>
<tr>
<td></td>
<td>Iberdrola Group has a solid Environmental Management Systems (EMS) and the target is the continuous improvement, it is demonstrated through different certifications and verifications. EMS: minimizing environmental risks, thus improving the company's environmental management in line with its commitment to environmental protection.</td>
</tr>
<tr>
<td></td>
<td>Water discharges – total volumes</td>
</tr>
<tr>
<td></td>
<td>% verified</td>
</tr>
<tr>
<td></td>
<td>76-100</td>
</tr>
<tr>
<td></td>
<td>What standard and methodology was used?</td>
</tr>
<tr>
<td></td>
<td>PwC verified this data according to GRI-4 and World Business Council.</td>
</tr>
<tr>
<td></td>
<td>Iberdrola Group has a solid Environmental Management Systems (EMS) and the target is the continuous improvement, it is demonstrated through different certifications and verifications. EMS: minimizing environmental risks, thus improving the company's environmental management in line with its commitment to environmental protection.</td>
</tr>
<tr>
<td></td>
<td>Water discharges – volume by destination</td>
</tr>
<tr>
<td></td>
<td>% verified</td>
</tr>
<tr>
<td></td>
<td>76-100</td>
</tr>
<tr>
<td></td>
<td>What standard and methodology was used?</td>
</tr>
<tr>
<td></td>
<td>PwC verified this data according to GRI-4 and World Business Council.</td>
</tr>
<tr>
<td></td>
<td>Iberdrola Group has a solid Environmental Management Systems (EMS) and the target is the continuous improvement, it is demonstrated through different certifications and verifications. EMS: minimizing environmental risks, thus improving the company's environmental management in line with its commitment to environmental protection.</td>
</tr>
<tr>
<td></td>
<td>Water discharges – volume by treatment method</td>
</tr>
<tr>
<td></td>
<td>% verified</td>
</tr>
<tr>
<td></td>
<td>76-100</td>
</tr>
<tr>
<td></td>
<td>What standard and methodology was used?</td>
</tr>
<tr>
<td></td>
<td>PwC verified this data according to GRI-4 and World Business Council.</td>
</tr>
<tr>
<td></td>
<td>Iberdrola Group has a solid Environmental Management Systems (EMS) and the target is the continuous improvement, it is demonstrated through different certifications and verifications. EMS: minimizing environmental risks, thus improving the company's environmental management in line with its commitment to environmental protection.</td>
</tr>
</tbody>
</table>
Water discharge quality – quality by standard effluent parameters

% verified
76-100

What standard and methodology was used?
PwC verified this data according to GRI-4 and World Business Council. 100% Iberdrola Hydro generation facilities under ISO 14001 and ISO 9001. Iberdrola Group has a solid Environmental Management Systems (EMS) and the target is the continuous improvement, it is demonstrated through different certifications and verifications. EMS: minimizing environmental risks, thus improving the company’s environmental management in line with its commitment to environmental protection.

Water discharge quality – temperature

% verified
76-100

What standard and methodology was used?
PwC verified this data according to GRI-4 and World Business Council. 100% Iberdrola Hydro generation facilities under ISO 14001 and ISO 9001. Iberdrola Group has a solid Environmental Management Systems (EMS) and the target is the continuous improvement, it is demonstrated through different certifications and verifications. EMS: minimizing environmental risks, thus improving the company’s environmental management in line with its commitment to environmental protection.

Water consumption – total volume

% verified
76-100

What standard and methodology was used?
PwC verified this data according to GRI-4 and World Business Council. 100% Iberdrola Hydro generation facilities under ISO 14001 and ISO 9001. Iberdrola Group has a solid Environmental Management Systems (EMS) and the target is the continuous improvement, it is demonstrated through different certifications and verifications. EMS: minimizing environmental risks, thus improving the company’s environmental management in line with its commitment to environmental protection.

Water recycled/reused

% verified
76-100

What standard and methodology was used?
PwC verified this data according to GRI-4 and World Business Council. At Iberdrola México, all the power plants, included Tamazunchale combined cycle station is certified and verified under UNE-EN-ISO 14001. The Group has a solid Environmental Management Systems (EMS) and the target is the continuous improvement, it is demonstrated through different certifications and verifications.

W6. Governance

W6.1

(W6.1) Does your organization have a water policy?
Yes, we have a documented water policy that is publicly available

W6.1a
(W6.1a) Select the options that best describe the scope and content of your water policy.

<table>
<thead>
<tr>
<th>Scope</th>
<th>Content</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Company-wide</td>
<td>Description of business dependency on water</td>
<td>The corporate policies define the directives and guidelines of the Company, which guide the conduct of the shareholders, directors, officers and other professionals of the group. The corporate policies are grouped into three categories: (i) corporate governance and regulatory compliance policies, (ii) risk policies, and (iii) sustainable development policies. Iberdrola has a publicly available company-wide water policy with performance standards for direct operations (also water management) including supplier, procurement and contracting best practice and acknowledges the human right to water and sanitation. The Group has policies of Environment, Sustainability, Biodiversity, among others. The Board of Directors approved all these policies. Iberdrola commits to promote a social culture focused on promoting awareness-raising among all of its stakeholders the SDG’s have been publically included in Iberdrola Sustainability Policy, including Goals 6 and 14. Iberdrola entails partnerships continually seeking an innovative development, in different aspects, including projects related to water (question 4.3a). The company is positioned as one of the utilities with the best water productivity by Global 100. Our goal is to maintain this intensity level above 50% during the next five years. Iberdrola is member of the UN CEO Water Mandate.</td>
</tr>
</tbody>
</table>

W6.2

(W6.2) Is there board level oversight of water-related issues within your organization?

Yes

W6.2a

(W6.2a) Identify the position(s) (do not include any names) of the individual(s) on the board with responsibility for water-related issues.

<table>
<thead>
<tr>
<th>Position of individual</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Board Chair</td>
<td>Water’s concern is present throughout the Company and the highest responsibility resides in the Board of Directors through its Sustainable Development Committee (previously CSR Committee). This is an internal committee of the Board of Directors, with no executive powers, which was created for informational and consulting purposes and which has powers to inform, advise, and propose within its sphere of activities. Within the context of Iberdrola’s ongoing exercise in transparency and communication with shareholders and the markets, the Company has since 2013 published an Annual Activities Report of the Consultative Committees of the Board of Directors, which integrates information regarding the Audit and Risk Supervision Committee, the Appointments Committee, the Remuneration Committee and the Sustainable Development Committee.</td>
</tr>
</tbody>
</table>

W6.2b
W6.2b Provide further details on the board’s oversight of water-related issues.

<table>
<thead>
<tr>
<th>Frequency of Water-Related Issues Integration</th>
<th>Governance Mechanisms for Water-Related Issues</th>
<th>Please Explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheduled Agenda Item</td>
<td>Monitoring Implementation and Performance</td>
<td>The chairman of the Board of Directors will decide on the agenda for the session. The Board of Directors will develop its functions seeking to maximize the social dividend, conceived as the creation of sustainable value for all the stakeholders that are affected by the activities of the Group, through the development of their businesses, the impulse of the business communities in the that the Society participates, the promotion of equality and justice, the promotion of innovation and care for the environment, leadership in the fight against climate change, among others. Also, the Board of Directors, establishes the policies and general strategies of the Company and the Group, approves the strategic or business plan, as well as the management objectives and annual budgets, the policy of investments and financing, the corporate responsibility policy and the policy of remuneration of the shareholder and establishes the policy of control and management of risks, including environmental and water-related ones, as well as the supervision of the internal information and control systems. The Sustainable Development Committee reviews, prior to its approval by the Board of Directors, the sustainability report, where information relevant to matters related to water is collected, as it is governed by the GRI 303 standard. The scope of corporate social responsibility and sustainability includes the contribution of the Group to sustainable development, respect for the environment and the environment.</td>
</tr>
<tr>
<td>Scheduled Agenda Item, some meetings</td>
<td>Overseeing Acquisitions and Divestiture</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Overseeing Major Capital Expenditures</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Providing Employee Incentives</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reviewing and Guiding Annual Budgets</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reviewing and Guiding Business Plans</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reviewing and Guiding Major Plans of Action</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reviewing and Guiding Risk Management Policies</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reviewing and Guiding Strategy</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reviewing and Guiding Corporate Responsibility</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Setting Performance Objectives</td>
<td></td>
</tr>
</tbody>
</table>

W6.3

(W6.3) Provide the highest management-level position(s) or committee(s) with responsibility for water-related issues (do not include the names of individuals).

Name of the position(s) and/or committee(s)
Chief Sustainability Officer (CSO)

Responsibility
Both assessing and managing water-related risks and opportunities

Frequency of reporting to the board on water-related issues
Quarterly

Please explain
The Sustainable Development Committee is part of the Board of Directors. They meet a minimum of eight times during the year, and water-related issues are treated in half of them. Between key issues treated in 2019 it is worth highlighting the one to "ensure that variable remuneration promotes the sustainability and profitability of the Company over the long term", which includes monitoring of activities, among others, risk management in environmental aspects, including water-related issues directly and indirectly with our operations and suppliers. They also monitor the non-financial indicators of the Company’s scorecard, linked to the Purpose and Values of the Iberdrola Group. Our CSO participates in this Committee, when environmental issues are in the agenda. Furthermore, they are the responsible Review of the Sustainability Report and the Integrated Report, where information relevant to matters related to water is collected, as it is governed by the GRI 303 standard.

W6.4

CDP
(W6.4) Do you provide incentives to C-suite employees or board members for the management of water-related issues?

<table>
<thead>
<tr>
<th>Provide incentives for management of water-related issues</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>No, not currently but we plan to introduce them in the next two years</td>
<td>Nevertheless, the strategic bonus for Iberdrola's directors is linked to two other SDGs, 7 and 13. The 2017/19 Strategic Bonus was a long-term incentive linked to the performance of the Company in relation to the development of the Strategic Plan approved by the Board of Directors and presented on February 24, 2016. The Company's performance will be evaluated based on the following parameters, which project a challenging scenario for a company that continues with its profitable growth, financially solid and committed to the environment, the fight against climate change and sustainable growth: (…) (d) Reduction of the average intensity of CO2 emissions, in line with UN SDGs 7 and 13. This objective consisted in a reduction of 5% in the average intensity of emissions in the period 2017-2019 is reached compared with the average of the period 2014-2016. It was reached in 2019.</td>
</tr>
</tbody>
</table>

W6.5

(W6.5) Do you engage in activities that could either directly or indirectly influence public policy on water through any of the following?

Yes, other

W6.5a

(W6.5a) What processes do you have in place to ensure that all of your direct and indirect activities seeking to influence policy are consistent with your water policy/water commitments?

We promote relationships geared to the enactment of efficient regulatory provisions allowing the development of a competitive market.

There is a continuous and constructive dialogue where information, knowledge, and opinions are exchanged. Iberdrola is thus acquainted with the concerns and proposals of regulatory entities and puts forward the Company's own opinions in the legitimate defense of its interests and those of its shareholders, customers, and users.

Iberdrola has specific policies regarding the management of environmental issues: the Environmental Policy, the Climate Change Policy, the Biodiversity Policy, the General Sustainable Development Policy and the Sustainable Management Policy. These policies define the specific guidelines that the Iberdrola Group must follow in the process of defining and developing its strategy and investments and with regards to its operations and control of its environmental risks. Iberdrola has integrated United Nations Sustainable Development Goals in its strategy, including number 6 ("Clean Water and Sanitation") and number 14 (Life below water). For Iberdrola, the environmental dimension of its activities is a necessary baseline for the formulation of its Strategic Plan and the operational planning of its businesses is fostering innovation, eco-efficiency, eco-design and a progressive reduction in the environmental impacts of its activities and in the supply chain (as WATER consumption).

W6.6

(W6.6) Did your organization include information about its response to water-related risks in its most recent mainstream financial report?

Yes (you may attach the report - this is optional)

IB_Sustainability_Report.pdf

IB_Annual_Financial_Information_2019.pdf

Annual Financial Report 2019, “Section 4 - Main risks and uncertainties”, from page 244. Sustainability Report 2019: Page 272, 306-3, Significant Spills Page 376: The main actions taken by the group for a more sustainable use of water are: - Limiting the volume of withdrawal and consumption of inland water in all technologies. - Establishing and controlling limits on ecological flows at the hydroelectric generation reservoirs. - Continually improving processes at facilities to reduce consumption and impact. - Avoiding withdrawal of water in water-stressed areas. - Reusing and recycling water at facilities. - Conducting awareness-raising campaigns to achieve a more efficient and responsible use of sanitary water by employees at offices.

W7. Business strategy

W7.1

CDP
Are water-related issues integrated into any aspects of your long-term strategic business plan, and if so how?

<table>
<thead>
<tr>
<th>Are water-related issues integrated?</th>
<th>Long-term time horizon (years)</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes, water-related issues are integrated</td>
<td>11-15</td>
<td>Iberdrola is positioned as one of the utilities with the best water productivity (revenues/water used), and the objective is maintain this rate above 50%, at least, until 2030, when the 2030 Agenda will be evaluated. This is a Company-wide objective monitored at the corporate level. Iberdrola's plan until 2030 includes actions like ensuring availability and sustainable management of water and sanitation for all. The substitution of less efficient conventional thermal (coal and oil-fired) technologies with renewable energies and combined cycles is going to be the pathway to load a decrease in water consumption per GWh.</td>
</tr>
</tbody>
</table>

Strategy for achieving long-term objectives:

<table>
<thead>
<tr>
<th>Are water-related issues are integrated</th>
<th>Long-term time horizon (years)</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes, water-related issues are integrated</td>
<td>11-15</td>
<td>Aspects that have influenced our strategy: Iberdrola is aware of the new international energy scene, which is characterized by the need to guarantee a competitive, safe and sustainable supply. In this context, clean technologies are decisive to fight against climate change and minimize dependence on fossil fuel. By 2030, Iberdrola’s commitment was to reduce 50% of CO2 emissions from the 2007 baseline, and to achieve this objective, the Company is aware that environmental management, including water-related issues, is one of the most important pillars in the Company’s businesses. This target was already achieved in 2019. Investment in renewables from 2018 to 2022 corresponds to 39% of the total investment (€ 34,000M€). The Company’s own decarbonization strategy for 2030 and 2050 points to a continuation in this line and in the development of renewable projects: 1,514 MW in offshore wind, 2,548 MW in onshore wind, 628 MW in solar and 1,916 MW in hydraulic generation technology for 2022.</td>
</tr>
</tbody>
</table>

Financial planning:

<table>
<thead>
<tr>
<th>Are water-related issues are integrated</th>
<th>Long-term time horizon (years)</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes, water-related issues are integrated</td>
<td>11-15</td>
<td>Investment in renewables from 2018 to 2022 corresponds to 39% of the total investment (€ 34,000M€). The Company’s own decarbonization strategy for 2030 and 2050 points to a continuation in this line and in the development of renewable projects: 1,514 MW in offshore wind, 2,548 MW in onshore wind, 628 MW in solar and 1,916 MW in hydraulic generation technology for 2022.</td>
</tr>
</tbody>
</table>

What is the trend in your organization’s water-related capital expenditure (CAPEX) and operating expenditure (OPEX) for the reporting year, and the anticipated trend for the next reporting year?

<table>
<thead>
<tr>
<th>Row</th>
<th>Water-related CAPEX (+/- % change)</th>
<th>Anticipated forward trend for CAPEX (+/- % change)</th>
<th>Water-related OPEX (+/- % change)</th>
<th>Anticipated forward trend for OPEX (+/- % change)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-19</td>
<td>0</td>
<td>90</td>
<td>0</td>
</tr>
</tbody>
</table>

Please explain

Iberdrola considers all expenses or investments regarding projects that have a clear environmental impact, whether direct or indirect, to be environmental expenses or investments: Treatment of emissions, treatment of waste, both hazardous and non-hazardous, reduction of environmental impact through the removal of pollution or pollutants from the environment, soil, groundwater, sediment or surface water and environmental prevention and management. All of this is aimed at emphasising environmental activities and initiatives, which are undertaken in order to move towards a more sustainable energy model. 19% of the total investments corresponds to water-related capital expenditure, and 2% of the total expenses to operating expenditure. Visit page 189 of the Iberdrola Sustainability Report 2019: https://www.iberdrola.com/wcorp/go/prod/en_US/corporativos/docs/IB_Sustainability_Report.pdf

Does your organization use climate-related scenario analysis to inform its business strategy?

<table>
<thead>
<tr>
<th>Use of climate-related scenario analysis</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>Iberdrola has chosen four climate scenarios on which it is performing the analysis of potential impacts on its business model: (i) Two transition scenarios that for Iberdrola represent potential paths towards a low-carbon economy. They are based on plausible projects prepared by the International Energy Agency: Sustainable Development Scenario (SDS) - It assumes achievement of the climate change goals agreed to in Paris. (ii) Two physical scenarios, based on the Intergovernmental Panel on Climate Change (IPCC): • Representative Concentration Pathway 8.5 (RCP 8.5) of the Intergovernmental Panel on Climate Change (IPCC): the most unfavourable case that the company might face corresponds to a 3.7°C increase in average global temperature during the 2081-2100 period. • RCP 4.5 of the Intergovernmental Panel on Climate Change (IPCC) stabilisation scenario, taking account of the efforts being made and to be made at the international level to reduce GHG emissions.</td>
</tr>
</tbody>
</table>

Has your organization identified any water-related outcomes from your climate-related scenario analysis?

Yes

If yes, please elaborate on how these outcomes are incorporated into your business strategy:

- Iberdrola has identified water-related outcomes from its climate-related scenario analysis. These outcomes include the potential impacts of climate change on water resources, such as changes in precipitation patterns and sea-level rise, which can affect the availability and quality of water for various uses. The company has incorporated these outcomes into its strategy by focusing on the development of water conservation and management practices to mitigate the effects of climate change. Examples include investing in advanced water treatment technologies to ensure the quality of drinking water, and developing water recycling and reuse initiatives to reduce the demand for freshwater. Additionally, Iberdrola has integrated climate resilience into its infrastructure planning, ensuring that new installations and upgrades are designed to withstand the impacts of future climate scenarios. This approach not only prepares the company for potential water-related challenges but also aligns with its commitment to sustainability and responsible business practices.

(If no, you may skip the following sections. If yes, please provide details on how these outcomes are incorporated into your business strategy.)
(W7.3b) What water-related outcomes were identified from the use of climate-related scenario analysis, and what was your organization’s response?

<table>
<thead>
<tr>
<th>Climate-related scenarios and models applied</th>
<th>Description of possible water-related outcomes</th>
<th>Company response to possible water-related outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>IEA Sustainable Development Scenario Other, please specify (IPCC RCP 4.5 and IEA NPS)</td>
<td>We are facing a real water crisis that can only be solved with the sustainable consumption, promotion of clean energies, optimization of production processes and the use of recycled water. The water resource risk, in a specific year, affects mainly the renewable energy business in Spain and, to a lesser extent, the renewable energy business in Brazil. Despite the fact that the Group has a large water storage capacity in Spain, the annual result depends, to a large extent, on the annual contributions of the rains. The variation of production of a dry year and a wet year, compared to the average reference value, can be estimated in a variability of -4,000 GWh and +5,000 GWh respectively in Spain, with an estimated impact range of -150 million euros and +500 million euros. In the medium-long term the dry years are compensated with the wet years. For that purpose it is planned an increase of more than 9,0 GWh (35%) of installed capacity by 2022 in a diversified mix by country and technologies, and more than 20 GWh in storage. With the following inversion planning: 13,300 M€ as investment from 2018 to 2022, to support the capacity growing of 15,14 MW in offshore wind, 2,548 MW in onshore wind, 628 MW in solar and 1,916 in hydraulic generation technology for 2022, spread in the following per main geographical area: USA 16 %, UK 9 %, Spain and Portugal: 45 %, Mexico 21 %, Brazil 7%.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>These risks are reviewed at least on an annual basis, within the framework of the assessment of the effectiveness of internal control carried out by the persons or divisions responsible. In line with the SDGs, Iberdrola performs comprehensive controls on the specific use and consumption of this resource. Iberdrola Group has EMS specific to the businesses and processes, based on the UNE-ENV 14001:2004 and EMAS standard, distributed and implemented throughout much of their organizations, what are allowing a reduction in water related risks, improvement in the management of resources, and optimization of investments and costs. There has been a comparative analysis of the two scenarios described in the previous question, allowing for conclusions to be made by business and geographic area regarding the level of resiliency of Iberdrola's strategy with respect to climate change in the short and medium term. Continuity of the Outlook 2018-2022 has been assumed, with a qualitative transfer thereof through 2030. The result of the analysis indicates that, thanks to the company's strategy and positioning in renewable energy, divestment from oil and coal plants, and smart grids, its business model is sufficient to face both scenarios. It is important to note that, over the long term, Iberdrola's goal to achieve carbon neutrality by 2050 (which the company already set in 2009) is more ambitious than the goals sought under the NPS scenario and is aligned with the SDGs.</td>
</tr>
</tbody>
</table>

(W7.4) Does your company use an internal price on water?

Row 1

Does your company use an internal price on water?

No, but we are currently exploring water valuation practices.

Please explain:

The Company do not have an internal water price as such, but we have carried out some studies and ecosystem assessments. We consider fresh water as an ecosystem service that generates a resource, and its provision consists in the regulation of the flow and availability of water and in the purification of it. Ecosystems play a crucial role in the global hydrological cycle, and in our facilities in particular, influencing the total amount of water available, its regulation (seasonality, variations in availability throughout the year) and purification (quality, purity biological, sediment load ...). Ecosystems can slow the flow of running water, modulating and regulating the availability of water after rainfall. Likewise, the passage of water through the soil, or its permanence in shallow wetlands can have a profound impact on its quality by purifying it of organic/inorganic contaminants. All these factors would be taken into account when establishing an internal water price.

(W8. Targets)

(W8.1) Describe your approach to setting and monitoring water-related targets and/or goals.

<table>
<thead>
<tr>
<th>Levels for targets and/or goals</th>
<th>Monitoring at the corporate level</th>
<th>Approach to setting and monitoring targets and/or goals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Company-wide targets and goals</td>
<td>Targets are monitored at the corporate level</td>
<td>Iberdrola was a pioneer in the digitization applied to the operation of hydroelectric power stations, aware of the importance of monitoring and seeking continuous improvement in the data obtained by the applications used. For example, Spain, where the installed capacity of Iberdrola corresponding to the Hydroelectric Power Plants represents more than 75% of the world total, is working on a continuous improvement of the control and remote management systems. The META Project (Operation, Remote Control and Automation Improvement Project) deployed, at the end of the 1990s, new automation systems at the Iberdrola Hydroelectric Power Plants, based on programmable logic controllers (PLCs), and 4 modern Basin Operation Centers, which supported by SCADA systems (Supervisory Control and Data Acquisition), allowed remote operation and detailed analysis of the operation of the facilities. In this way, thanks to the META Project, the closed operation of the facilities was abandoned, so that the more than 9,000 MW of the Hydroelectric Power Plants went to remote control from the Basin Operation Centers. In the coming years, Iberdrola will update the SCADA systems of its Basin Operation Centers in order to equip them with the latest advances available and incorporate the experience acquired in the more than 20 years of use of these technological solutions.</td>
</tr>
<tr>
<td>Business level specific targets and/or goals</td>
<td>Goals are monitored at the corporate level</td>
<td></td>
</tr>
<tr>
<td>Activity level specific targets and/or goals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specific targets and/or goals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Site/facility specific targets and/or goals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brand/product specific targets and/or goals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Country level specific targets and/or goals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basin specific targets and/or goals</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(W8.1a)
Provide details of your water targets that are monitored at the corporate level, and the progress made.

Target reference number
Target 2

Category of target
Supplier engagement

Level
Company-wide

Primary motivation
Recommended sector best practice

Description of target
Water management depends on both operational level and supply chain level. The main reason to monitor and control our supply chain water footprint is the lifecycle driver which we follow within our environmental management. We try to act as reference in water management for contractors and suppliers. There are commitments in the Purchasing area to foster environmental responsibility and to promote strict compliance by suppliers with contractual conditions and current legislation, with emphasis on respect for the principles established in the United Nations Global Compact. Those suppliers with orders during the year who do not have environmental certifications are sent environmental engagement and awareness-raising communications to move forward in this area and commence implementation or certification.

Quantitative metric
% increase in proportion of suppliers engaged

Baseline year
2005

Start year
2005

Target year
2020

% of target achieved
100

Please explain
Supplier traction activities in quality, environment (water quality discharges, for instance) and occupational risk prevention among those relevant suppliers who do not have a management system certified by a third party are consolidated practices. Each one was contacted and informed that their certification in these areas would be valued positively, since Iberdrola’s objectives include having key suppliers with certified management systems like the Company’s corporate units and business areas to ensure reliable and responsible conduct throughout the supply chain.

Target reference number
Target 3

Category of target
Water use efficiency

Level
Company-wide

Primary motivation
Reduced environmental impact

Description of target
Decrease water consumption at offices and control facilities. The consumption decreased from 240,661 m³ in 2018 (data has been revised and updated) to 204,581 m³ in 2019.

Quantitative metric
Other, please specify (water consumption)

Baseline year
2013

Start year
2013

Target year
2020

% of target achieved
100

Please explain
Action taken by Iberdrola for a more sustainable use of water: Conducting awareness-raising campaigns to achieve a more efficient and responsible use of sanitary water by employees at offices. https://www.iberdrola.com/environment/water-use-good-habits

Target reference number
Target 4

Category of target
Product water intensity

Level
Company-wide

Primary motivation
Commitment to the UN Sustainable Development Goals
Description of target
Iberdrola is positioned as one of the utilities with the best water productivity (revenues/water used), according to Global 100's classification among a selection of main utilities. Iberdrola's target is to maintain this rate above 50% in the coming 5 years.

Quantitative metric
% reduction per revenue

Baseline year
2017

Start year
2017

Target year
2023

% of target achieved
100

Please explain
At the end of 2019, the use of water in thermal generation has increased by 53 % respect to 2018 (from 1,042 to 1,599 m3/GWh). After use in cooling and other auxiliary processes, 96% of the water withdrawn at thermal generation and cogeneration facilities returns to the receptor environment in a physico-chemical condition allowing it to be utilised by other users without affecting the natural environment. The other 4 % has been consumed and/or retained in the various processes, or returned to the environment in the form of steam generated in the cooling systems of the thermal power plants.

W8.1b

(W8.1b) Provide details of your water goal(s) that are monitored at the corporate level and the progress made.

Goal
Watershed remediation and habitat restoration, ecosystem preservation

Level
Site/facility

Motivation
Climate change adaptation and mitigation strategies

Description of goal
Prevent potential impacts on fauna located downriver of reservoirs.

Baseline year
2017

Start year
2017

End year
2020

Progress
Limnological control of the most eutrophicated reservoirs in the Duero and Tajo basins (pollutant loads caused by agents unrelated to Iberdrola that travel along these rivers before they flow into the reservoirs).

Goal
Watershed remediation and habitat restoration, ecosystem preservation

Level
Site/facility

Motivation
Climate change adaptation and mitigation strategies

Description of goal
Avoid levels of dissolved oxygen that are harmful to ichthyofauna.

Baseline year
2017

Start year
2017

End year
2020

Progress
At the hydroelectric power pants, to ensure turined waters contain the minimum amounts of dissolved oxygen essential for aquatic life.

Goal
Watershed remediation and habitat restoration, ecosystem preservation

Level
Business activity

Motivation
Climate change adaptation and mitigation strategies
Goal
Reduce environmental impact of product in use phase

Level
Business activity

Motivation
Commitment to the UN Sustainable Development Goals

Description of goal
Ensure the success of programs to recover and offset impact on Permanent Conservation Areas (PCAs) and degraded areas (quarries, tips).

Baseline year
2017

Start year
2017

End year
2030

Progress
Continuation of environmental biodiversity conservation programs based on the impacts of plant operation: monitoring of fauna (ichthyofauna, herpetofauna, avifauna, mammalian fauna, entomofauna, etc.); monitoring of flora in reforested areas; water quality control; monitoring of erosive processes, etc.

Goal
Promotion of water data transparency

Level
Company-wide

Motivation
Brand value protection

Description of goal
Iberdrola supports transparency regarding its water strategy. Water footprint is included in its environmental footprint.

Baseline year
2006

Start year
2006

End year
2030

Progress
Iberdrola publishes its water data through various reports such as the Sustainability Report and through its website. It also publishes its CDP Water Answers through the CEO Water Mandate since 2012. Water footprint is included in our Environmental Footprint.

Goal
Providing access to safely managed Water, Sanitation and Hygiene (WASH) in local communities

Level
Business activity

Motivation
Shared value

Description of goal
Iberdrola notes that there is still a proportion of the population without access to safe drinking water and sanitation systems. In addition, a lack of appropriate sanitation profoundly affects the health and well-being of billions of people.

Baseline year
2015

Start year
2015

End year
2030

Progress
Iberdrola has joined the challenge of achieving the objectives of Sustainable Development Goals (SDGs), including Goal 6: Clean water and sanitation. Installation of systems for capturing and storing rainwater for human consumption in the area around the Caetité windfarm in inland Bahia (Brazil). This initiative supplied water to over 3,300 homes that did not have a connection to the general water system, and no access to any type of storage resource. Iberdrola and Neoenergía worked on this project with the Brazilian Ministry for Social Development and the Fight against Hunger (MDS) as part of the Water for All programme.

Goal
Engagement with public policy makers to advance sustainable water management and policies

Level
Company-wide

Motivation
Recommended sector best practice

Description of goal
Establish a constructive dialogue with Government Agencies, non-governmental organizations, shareholders, customers, local communities and other stakeholders are important in order to:
1. Work jointly in the search for solutions to environmental and water problems. 2. Contribute to the development of a useful public policy from the environmental standpoint that is efficient in economic terms. 3. Raise awareness on the importance of taking measures to reduce greenhouse gases.

Baseline year
2017

Start year
2017

End year
2030

Progress
Iberdrola develops a set of communication and dialogue channels with environmental interest groups. Through these means, Iberdrola communicates the objectives, actions taken and achievements of the Company in this field, and to receive feedback and requests from the interested parties in the area of the environment.

Goal
Other, please specify (Environmental Management System)

Level
Company-wide

Motivation
Risk mitigation

Description of goal
We aim to improve the compatibility of our infrastructures with the environment and develop a clean management system. We have a Global Environmental Management System implemented (accordance to ISO 14001:2004 standard, certified by AENOR). We also have Environmental Management Systems (EMS) specific to the businesses, based on the ISO 14001:2004 and EMAS standard, which allow for a reduction in environmental risks, improvement in the management of resources, and optimisation of investments and costs.

Baseline year
2006

Start year
2006

End year
2030

Progress
In 2019, 83% of the Group's energy production is subject to management systems under the UNE-EN ISO 14001 and UNE-EN ISO 9001 standards.

Goal
Engaging with customers to help them minimize product impacts

Level
Company-wide

Motivation
Recommended sector best practice

Description of goal
According to Iberdrola's commitment with society, Iberdrola is developing awareness campaigns on saving and water use efficiency.

Baseline year
2013

Start year
2013

End year
2020

Progress
At Iberdrola Group, we try to meet our customers' needs and expectations of our customers in order to offer them better solutions, continuously working to care for and increase their satisfaction, strengthening their connection to our group, and promoting responsible consumption. Information is available at: https://www.iberdrola.com/environment/water-use-good-habits
W9. Verification

W9.1

(W9.1) Do you verify any other water information reported in your CDP disclosure (not already covered by W5.1a)?

Yes

W9.1a

(W9.1a) Which data points within your CDP disclosure have been verified, and which standards were used?

<table>
<thead>
<tr>
<th>Disclosure module</th>
<th>Data verified</th>
<th>Verification standard</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>W1 Current state</td>
<td>The company's sustainability and integrated reports are available to all users in the Shareholders and Investors section of Iberdrola’s website.</td>
<td>AA1000AS</td>
<td>The Sustainability Report that Iberdrola publishes annually presents comprehensive information regarding the Group’s performance in the economic, environmental, social, and corporate governance dimensions. Iberdrola prepares these reports in accordance with the consolidated set of GRI Standards for sustainability reporting and the Supplement for Electrical Sector companies, both from Global Reporting Initiative (GRI), as well as the AA1000 standard, and subjects them to an independent external verification according to ISAE 3000.</td>
</tr>
<tr>
<td>W2 Business impacts</td>
<td>The company’s sustainability and integrated reports are available to all users in the Shareholders and Investors section. Iberdrola has been continuously applying Assurance Standard AA1000 for the last eleven years.</td>
<td>AA1000AS</td>
<td>The Sustainability Report that Iberdrola publishes annually presents comprehensive information regarding the Group’s performance in the economic, environmental, social, and corporate governance dimensions. Iberdrola prepares these reports in accordance with the consolidated set of GRI Standards for sustainability reporting and the Supplement for Electrical Sector companies, both from Global Reporting Initiative (GRI), as well as the AA1000 standard, and subjects them to an independent external verification according to ISAE 3000.</td>
</tr>
<tr>
<td>W3 Procedures</td>
<td>The company’s sustainability and integrated reports are available to all users in the Shareholders and Investors section. Iberdrola has been continuously applying Assurance Standard AA1000 for the last eleven years.</td>
<td>AA1000AS</td>
<td>The Sustainability Report that Iberdrola publishes annually presents comprehensive information regarding the Group’s performance in the economic, environmental, social, and corporate governance dimensions. Iberdrola prepares these reports in accordance with the consolidated set of GRI Standards for sustainability reporting and the Supplement for Electrical Sector companies, both from Global Reporting Initiative (GRI), as well as the AA1000 standard, and subjects them to an independent external verification according to ISAE 3000.</td>
</tr>
<tr>
<td>W4 Risks and opportunities</td>
<td>The company’s sustainability and integrated reports are available to all users in the Shareholders and Investors section. Iberdrola has been continuously applying Assurance Standard AA1000 for the last eleven years.</td>
<td>AA1000AS</td>
<td>The Sustainability Report that Iberdrola publishes annually presents comprehensive information regarding the Group’s performance in the economic, environmental, social, and corporate governance dimensions. Iberdrola prepares these reports in accordance with the consolidated set of GRI Standards for sustainability reporting and the Supplement for Electrical Sector companies, both from Global Reporting Initiative (GRI), as well as the AA1000 standard, and subjects them to an independent external verification according to ISAE 3000.</td>
</tr>
<tr>
<td>W6 Governance</td>
<td>The company’s sustainability and integrated reports are available to all users in the Shareholders and Investors section. Iberdrola has been continuously applying Assurance Standard AA1000 for the last eleven years.</td>
<td>AA1000AS</td>
<td>The Sustainability Report that Iberdrola publishes annually presents comprehensive information regarding the Group’s performance in the economic, environmental, social, and corporate governance dimensions. Iberdrola prepares these reports in accordance with the consolidated set of GRI Standards for sustainability reporting and the Supplement for Electrical Sector companies, both from Global Reporting Initiative (GRI), as well as the AA1000 standard, and subjects them to an independent external verification according to ISAE 3000.</td>
</tr>
<tr>
<td>W7 Strategy</td>
<td>The company’s sustainability and integrated reports are available to all users in the Shareholders and Investors section. Iberdrola has been continuously applying Assurance Standard AA1000 for the last eleven years.</td>
<td>AA1000AS</td>
<td>The Sustainability Report that Iberdrola publishes annually presents comprehensive information regarding the Group’s performance in the economic, environmental, social, and corporate governance dimensions. Iberdrola prepares these reports in accordance with the consolidated set of GRI Standards for sustainability reporting and the Supplement for Electrical Sector companies, both from Global Reporting Initiative (GRI), as well as the AA1000 standard, and subjects them to an independent external verification according to ISAE 3000.</td>
</tr>
<tr>
<td>W7 Strategy</td>
<td>Environmental footprint: The Corporate Environmental Footprint (CEF) is defined as a multi-criteria measure of the environmental performance of a goods/services providing organization from a life cycle perspective. The main objective of a CEF is to reduce the environmental impact derived from the organization’s activities. Other, please specify (ISO/TS 14072:2014. Environmental management — Life cycle assessment — Requirements and guidelines for organizational life cycle assessment.) Water footprint included in the The Corporate Environmental Footprint (CEF) is defined as a multi-criteria measure of the environmental performance of a goods/services providing organization from a life cycle perspective.</td>
<td>AA1000AS</td>
<td>The Sustainability Report that Iberdrola publishes annually presents comprehensive information regarding the Group’s performance in the economic, environmental, social, and corporate governance dimensions. Iberdrola prepares these reports in accordance with the consolidated set of GRI Standards for sustainability reporting and the Supplement for Electrical Sector companies, both from Global Reporting Initiative (GRI), as well as the AA1000 standard, and subjects them to an independent external verification according to ISAE 3000.</td>
</tr>
<tr>
<td>W8 Targets</td>
<td>The company’s sustainability and integrated reports are available to all users in the Shareholders and Investors section. Iberdrola has been continuously applying Assurance Standard AA1000 for the last eleven years.</td>
<td>AA1000AS</td>
<td>The Sustainability Report that Iberdrola publishes annually presents comprehensive information regarding the Group’s performance in the economic, environmental, social, and corporate governance dimensions. Iberdrola prepares these reports in accordance with the consolidated set of GRI Standards for sustainability reporting and the Supplement for Electrical Sector companies, both from Global Reporting Initiative (GRI), as well as the AA1000 standard, and subjects them to an independent external verification according to ISAE 3000.</td>
</tr>
</tbody>
</table>

W10. Sign off

(W10.1) Use this field to provide any additional information or context that you feel is relevant to your organization’s response. Please note that this field is optional and is not scored.
(W10.1) Provide details for the person that has signed off (approved) your CDP water response.

<table>
<thead>
<tr>
<th>Row 1</th>
<th>Job title</th>
<th>Corresponding job category</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Chief Innovation and Sustainability Officer, Presidency, depends directly from the CEO and President</td>
<td>Chief Sustainability Officer (CSO)</td>
</tr>
</tbody>
</table>

W10.2

(W10.2) Please indicate whether your organization agrees for CDP to transfer your publicly disclosed data on your impact and risk response strategies to the CEO Water Mandate’s Water Action Hub [applies only to W2.1a (response to impacts), W4.2 and W4.2a (response to risks)].

Yes

Submit your response

In which language are you submitting your response?

English

Please confirm how your response should be handled by CDP

<table>
<thead>
<tr>
<th>I am submitting to</th>
<th>Public or Non-Public Submission</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investors</td>
<td>Public</td>
</tr>
</tbody>
</table>

Please confirm below

I have read and accept the applicable Terms