

WORLD Resources Institute

AQUEDUCT

WRI's GLOBAL WATER RISK MAPS

- What is Aqueduct
- Water Stress and Water Risk
- Aqueduct's Water Risk Indicators
- Ongoing Work in 2013

GLOBAL WATER RISK DATABASE AND MAPPING TOOL

RISKS TO: GOVERNMENT SCOMPANIES INVESTORS

DETAILED, COMPARABLE, GLOBAL WATER RISK INFORMATION

WHERE WE PILOT TESTED: KEY BASINS

HOW WE EVOLVED: GLOBAL MAPPING

USER FRIENDLY USER INTERFACE

UNDERSTANDING WATER STRESS

Water stress

- Definition: Total water withdrawal (2010)/mean available blue water (1950-2008)
- Total water withdrawal : water withdrawal from domestic water use, industrial water use, and agricultural water use
- Available blue water : total freshwater water supply subtracting consumptive use. Roughly equivalent to available surface water

Water scarcity

- Definitions vary: measures the extent to which sufficient water resources physically exist in a specific location
 - Volume of freshwater supply/total population
 - Total withdrawal/freshwater supply
 - Consumptive use/freshwater supply

Vorosmarty et. al. 2000, Science, "Global Water Resources: Vulnerability from Climate Change and Population Growth"

INTERPRETING BASELINE WATER STRESS

Baseline Water Stress (BWS)

- Total annual water withdrawals expressed as a percentage of mean available blue water
- Higher values indicate where water stress is high and where there's competition between major water users

Thresholds

- BWS >20 % may begin to experience risks from stress to the environment, competing water uses, and natural variations in supply
- BWS > 40% may signify severely water stressed conditions

United Nations , 1997, "Comprehensive Assessment of the Freshwater Resources of the World" Vorosmarty et. al. 2000, Science, "Global Water Resources: Vulnerability from Climate Change and Population Growth"

UNDERSTANDING RISK: AQUEDUCT FRAMEWORK

BUILDING ON SCIENCE: EXPERT REVIEWERS

- CDP Water Disclosure Project
- Ceres
- Columbia University
- Deloitte Consulting LLP
- Global Adaptation Institute
- Global Water Strategies
- Nanjing University
- National Geographic
- Pacific Institute
- The Nature Conservancy

- The World Bank
- US Environmental Protection Agency
- University of Michigan at Ann Arbor
- University of North Carolina Chapel Hill
- University of Virginia
- Water Footprint Network
- World Business Council for Sustainable Development
- Yale University

Interannual variability = $\frac{Standard \ deviation \ of \ total \ blue \ water \ (1950 - 2008)}{Mean \ total \ blue \ water \ (1950 - 2008)}$

Seasonal variability = $\frac{Standard \ deviation \ of monthly \ total \ blue \ water \ (1950 - 2008)}{Mean \ monthly \ total \ blue \ water \ (1950 - 2008)}$

Upstream storage = $\frac{Upstream storage capacity}{Mean total blue water (1950 - 2008)}$

Data: Lehner et al. GRanD

Return flow ratio = $\frac{Upstream nonconsumptive use (2010)}{Mean available blue water (1950 - 2008)}$

Upstream protected land =

Total blue water from protected lands (1950 – 2008)

Mean total blue water (1950 - 2008)

Data: IUCN, UNEP

OTHER INDICATORS

Indicator	Data Source	Scale
Flood occurrence	Brakenridge, Dartmouth Flood Observatory	Polygons
Drought severity	Sheffield and Wood	1 degree raster
Groundwater stress	Gleeson et al.	Major aquifers
Media coverage	Google	Country
Access to water	WHO, UNICEF	Country
Threatened amphibians	IUCN Red List	Polygons

COMING SOON: UPDATED PROJECTIONS

CHANGE IN WATER STRESS: 2020

AQUEDUCT[®]

Charles Iceland: <u>ciceland@wri.org</u> Tien Shiao: <u>tshiao@wri.org</u>

WRI.org/Aqueduct

MODELING: WATER SUPPLY AND DEMAND

CATCHMENTS

- Global Drainage Basin Database by National Institute for Environmental Studies (2009)
- Approximately 15,000 hydrologically correct catchments
- Mean area is 8,804 km²

WATER SOURCE: RUNOFF

- NASA's Global Land Data Assimilation System Version 2 Selected GLDAS-2
- 1948-2008 (used 1950-2008)
- Monthly runoff summed to annual
- Resampled to 1km x 1 km

WATER DEMAND: TOTAL WATER WITHDRAWAL BY COUNTRY AND SECTOR

Total Water Use by Country

FAO of the UN, AQUAST database 2010

WATER DEMAND: DISAGGREGATION

- Agricultural withdrawals disaggregated by Global Map of Irrigated Areas I2000)
- Industrial withdrawals disaggregated by Nighttime Lights (2010)
- Domestic withdrawals disaggregated by Gridded Population of the World (2010)

WATER DEMAND: CONSUMPTIVE USE

Consumptive use (C_t) is the sum of sectoral use times the sectoral consumptive use ratio (cr) (Shiklomanov and Rodda 2003)

 $C_{t} = (U_{agr} \times cr_{agr}) + (U_{dom} \times cr_{dom}) + (U_{ind} \times cr_{ind})$

MODELING: FLOW ACCUMULATION

Runoff

Precipitation minus evaporation, transpiration, and change in soil moisture

Total Blue Water

- Accumulated runoff
- Equivalent to naturalized flow

Available Blue Water

- Upstream runoff minus consumptive use, plus runoff
- Loosely equivalent to surface water and shallow groundwater

