

16/17Nov 2010, Cape Town, South Africa

Emerging efforts to contextualize water quantity/quality information to give it meaning to respective stakeholders

Guido Sonnemann, Programme Officer Sustainable Consumption and Production Branch Division of Technology, Industry and Economics

UNEP and the RE/ SCP subprogramme

UNEP/ SETAC Life Cycle Initiative

Water Footprint Network and ISO

UN Environment Programme Thematic priorities

- Climate change
- Disasters and conflicts
- Ecosystem management
- Environmental governance
- Harmful substances and hazardous waste
- Resource Efficiency/ Sustainable Consumption and Production

Resource Efficiency defined...

Efficiency at economic level

+

Environmental dimension

=

Resource efficiency (materials, energy, water, land & emissions)

Reducing the environmental impact

of consumption and production

of goods and services over their full life cycles

 \rightarrow By producing more wellbeing with less resource consumption, RE enhances the means to meet human needs while respecting the ecological carrying capacity of the Earth.

UNEP and the RE/ SCP subprogramme

UNEP/ SETAC Life Cycle Initiative

Water Footprint Network and ISO

LCIA Midpoint-Damage Framework of the UNEP/SETAC Life Cycle Initiative

Frequently quoted 'water' impact assessment method

- Pfister et al.
 - Development of
 - « Human Health » Indicator: water used is not available for agriculture -> malnutrition
 - «Ecosystem quality » indicator: ecosystems water needs
 - « Natural ressources » indicator : energy needs for desalination

Pfister, Koehler & Hellweg (2009), ES&T 43(11): 4098-4104

13

Per m3 of water consumed

Damage factors on watershed level

Life Cycle

Initiative

Other 'water' impact assessment methods

Frischknecht et al.

Ecopoint (Swiss Ecological Scarcity) based on scarcity

Van Zelm et al.

 « Ecosystem » indicator realting the impact of the level of the water table on ecosystems

Motoshita et al.

« Human Health » indicator

Mila i Canals et al.

- Impacts on ecosystems
- Impacts on natural ressources (Stock/ availability ratio)

Humbert et al.

Impact on ecosystems related to dams

...

Review of methods addressing water

UNEP and the RE/ SCP subprogramme

UNEP/ SETAC Life Cycle Initiative

Water Footprint Network and ISO

Water Footprint Network (WFN) Manual

Green water footprint

volume of rainwater evaporated or incorporated into product.

Blue water footprint

volume of surface or groundwater evaporated, incorporated or returned to other catchment or the sea.

Grey water footprint

volume of polluted water

Water Footprint

NETWORK

UNEP and the RE/ SCP subprogramme

UNEP/ SETAC Life Cycle Initiative

Water Footprint Network and ISO

CORPORATE WATER ACCOUNTING

An Analysis of Methods and Tools for Measuring Water Use and its Impacts

Report on corporate water accounting

Overarching objective:

Stocktaking exercise to clarify commonalities and differences among existing and emerging water accounting methods and tools in private sector

- Elucidate applicability, strengths, and weaknesses
- Identify gaps and challenges
- Suggest benefits from harmonization and testing

The CEO Water Mandate

Accounting Methods and Tools

Focus on four key accounting methods/tools:

- 1. Life Cycle Assessment (LCA)
- 2. The Water Footprint Network's "water footprint"
- 3. WBCSD Global Water Tool
- 4. GEMI Water Sustainability Planner/Tool

Applications of Corporate Water Accounting

Corporate water accounting can be seen as serving four general purposes:

- 1. Operational efficiency, product eco-design, sustainable manufacturing
- 2. Water risk assessment
- 3. Managing social and environmental impacts and response
- 4. Communicating with stakeholders
- 5. Addressing the water-energy-carbon nexus

Findings on Methods and Tools

	WFN Water Footprinting	Life Cycle Assessment	WBCSD Global Water Tool	GEMI Water Sustainability Tools
<u>General</u> <u>Strengths</u>	 Good tool for "big picture" strategic planning purposes Easily understood by non-technical audiences Best for volume assessments, as opposed to water quality 	 Uniquely well-suited for cross-media environmental assessments Mature science-based methods for assessing water quality impacts 	 Good first-tier risk screen Inexpensive, fast, and does not require company expertise Simple inventory for companies to compile their water data 	 Useful for companies just beginning to think about water stewardship Inexpensive, fast, does not require expertise
<u>General</u> <u>Weaknesses</u>	 Generic, aggregated blue- green-grey WF figures are misleading Grey WF deemed ineffective by companies 	 No universally accepted method of assessing water use impacts Results can be difficult to communicate to nontechnical audiences 	 Does not address water quality/discharge-related risks Does not address impacts Assessments provide only rough estimates of risk 	 Rudimentary assessment of relative risks No quantified results

For more information:

Guido Sonnemann

Programme Officer, Innovation Sustainable Consumption and Production Branch, UNEP DTIE; Paris, France; Email: guido.sonnemann@unep.org