SABMiller India – CII
Neemrana Ground Water Management Initiative:
A Model for collective governance
by
Meenakshi Sharma - SABMiller India
Vinayak Damle - Confederation of Indian Industry
Sustainability of Water Resource

- Compliance &
- Enhancing Use efficiency
- CSR & Partnerships & Collaborations
Basic Model of Corporate Initiative

- Water Balance Model
 - Sustainability assessment for different water and land use choices
 - Assessment of net incomes to farmers for preferred land and water use choices
 - Participatory crop demonstration trials
 - Crops Services for innovative farmers
 - Irrigation systems design for enhanced water use efficiency
 - Training programme
 - Inputs and market linkage

- Knowledge Generation & Development of Planning Tools
 - Agriculture Extension Program for Farmers

- Water Harvesting and Recharge
 - Development of shelf of projects
 - Assisting PRI and other stakeholders

- Technology development and demonstration

- Mobilizing Stakeholders
 - Dialogue with all stakeholders (Govt. agencies, industries, PRI, CBO, NGOs)
 - Technical and training support to stakeholders
 - Initiating and facilitation stakeholder dialogue
Framework – Water Balance

- Water Balance
 - Abstraction
 - Water Available
 - Water Utilization
 - Losses
 - Precipitation
 - Infiltration
 - Shallow Soil Moisture
 - Deep Infiltration?
 - Evaporation
 - Surface Storage
 - Aquifer Recharge
 - Immediate Evaporation
 - Runoff
 - Irrigation
 - Water Consumption
 - Evapotranspiration
 - Deep Infiltration?
 - Consumed water
 - Industries
 - Deep Infiltration?
 - Human's / Live Stock
 - Water Consumption
 - Deep Infiltration?
1st Step in Project Planning: mapping

Area Demarcation of > Watershed basin on the basis of ridgeline
Contours Derivation 5m from DEM
Process of Water Balance: cascading starting from 1st order

1st order WS/Streams

2nd order WS/Streams

3rd order WS/Streams

4th order WS/Streams
Industrial Area Marked

Existing Water Bodies Marked
LISSIII 07 Feb 2006

- Hills
- Crop Classification
- Village Boundary
Overlay of LISS Classification on Cartosat-I
Water level contours for the entire target area
Field data collection to carry out water balance of the area
Strategies for Recharge

Run-off estimates

- By Rational method (Rainfall intensity basis)
- By Curve number method (Antecedent moisture content basis)

Technology for ridge areas

Runoff water directly penetrates to deep aquifer through opening in rocks.
Conceptual Model of Recharge Shaft

- **Inlet**
- **Open space for water inflow from storage chamber**
- **Dimensions of the chamber**: 2.0 m x 2.0 m x 3.0 m
- **Pebble**
- **Sand**
- **Gravel**
- **Clean water**
- **Perforations**
- **Casing**
- **GL**
- **12 inches**
- **40 inches**
- **70 m**
Technology for plain areas where drainage exists

- Construction of stone masonry or improved gabion structure across the drainage channel.
- Introduction of artificial recharge shaft in the ponding area.

Masonry check dam with artificial recharge system
Technology for plain areas with totally obliterated drainage system

- Dug out pits in low lying areas, a few being constructed presently.
Improved water use efficiency through improved irrigation techniques

<table>
<thead>
<tr>
<th>Particulars</th>
<th>Sprinkler Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crop</td>
<td>Bajara, Bhindi</td>
</tr>
<tr>
<td>Variety</td>
<td>MP-7792, Paineer - 86M52, Shona-16</td>
</tr>
<tr>
<td>No. of Villages Covered</td>
<td>30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Irrigation Number</th>
<th>Time duration, min</th>
<th>Water Applied, m³</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>300</td>
<td>77.94</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>300</td>
<td>77.94</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>270</td>
<td>70.15</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>300</td>
<td>77.94</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>240</td>
<td>62.35</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>210</td>
<td>54.56</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>360</td>
<td>93.53</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>300</td>
<td>77.94</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>360</td>
<td>93.53</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>120</td>
<td>31.17</td>
<td></td>
</tr>
<tr>
<td>total</td>
<td>2760</td>
<td>717.05</td>
<td></td>
</tr>
</tbody>
</table>

This is for participatory crop demonstration trials on 0.2 ha plots. The conventional practice is minimum 960 m³ water through 8 irrigations. That is a minimum saving of 25% for practices that can be promoted in a short duration – not high end practices that require longer duration for adoption.
INM Demonstration

Farmer’s practice

Wheat Crop trails

Cluster bean Crop trails
Results of Participatory Crop Demonstration Trials

<table>
<thead>
<tr>
<th>Cost Details</th>
<th>Bajara</th>
<th>Okra</th>
</tr>
</thead>
<tbody>
<tr>
<td>Under conventional crop & irrigation management practice on 0.2 ha area</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost of Seed, Rs</td>
<td>250</td>
<td>900</td>
</tr>
<tr>
<td>Cost of Major Nutrients, Rs</td>
<td>445</td>
<td>610</td>
</tr>
<tr>
<td>Cost of Micro Nutrients (Zn, Br, S, etc)</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total Inputs Cost, Rs</td>
<td>695</td>
<td>1510</td>
</tr>
<tr>
<td>Total Production, qt</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>Gross Income, Rs</td>
<td>4,800</td>
<td>18,000</td>
</tr>
<tr>
<td>Net Income, Rs</td>
<td>4,105</td>
<td>16,490</td>
</tr>
</tbody>
</table>

Under INM (Integrated Nutrient Management) Participatory Crop Demonstration Trial		
Cost of Seeds, Rs	290	3600
Cost of Major Nutrients, Rs	300	388
Cost of Micro Nutrients (Zn, Br, S, etc)	200	235
Total Inputs Cost, Rs	790	4223
Total Production, qt	12	30
Gross Income, Rs	9600	45000
Net Income, Rs	8810	40777

Increase in Net Income

- **Bajara**: 4,705 (+114%)
- **Okra**: 24,287 (+147%)

© Confederation of Indian Industry
Water Resource Sustainability Scenario

Gap in Ground water Abstraction and Recharge
- Total estimated abstraction = 65.35 Mm3 (238 mm)
- Total estimated deep recharge = 6.27 Mm3 (22.86 mm)
- Estimated gap between recharge and abstraction = 59.08 Mm3 (215.14 mm)
- Therefore estimated annual decline of groundwater level = 0.71 m
- The actual observed average annual decline of groundwater level = 0.9 m

Enhancement of natural recharge
- Estimated deep ground water recharge from ppt through natural process: 6.27 Mm3 (22.86 mm, 3.5% of ppt)
- Deep infiltration from ppt:119.31 Mm3 (434.7 mm, 66.51% of ppt)

Potential for artificial recharge
- Estimated run-off = 53.81 Mm3 (196 mm)
- Total required artificial recharge = 42 Mm3 (153 mm) i.e. 78.05% of the total runoff.

Potential for water saving in agriculture
- Potential for water saving in groundwater irrigation in agriculture = 30% or 17.08 Mm3 (62.14 mm)
Institutionalising sharing of knowledge

- Development of a resource center for putting all knowledge and information in public domain
- Providing online assistance to farmers and other stakeholders
Challenges

- Corporate capacities
- Limitations of Government schemes and programmes
- Managing convergence
<table>
<thead>
<tr>
<th></th>
<th>Corporate/ SABMiller</th>
<th>Apex body/ CII</th>
<th>R&D/ Resource Organisations/ ACWADAM</th>
<th>Grassroot NGOs/ HUMNANA</th>
<th>Govt./ CGWB/ RIICO</th>
<th>Donors – Innovative Programs</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge generation</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Augmentation (Ground water recharge)</td>
<td>✓ ✓</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water use efficiency in Agriculture</td>
<td>✓ ✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Stakeholder dialogue</td>
<td>✓ ✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Convergence of govt. programmes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Resource Centers – activities, information, web sites</td>
<td>✓ ✓</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

 ✓: Activities being conducted by primary partners – **SABMiller, CII, ACWADAM, Humana**
 ✓: Activities being conducted by other collaborating stakeholders in a small way – other industries, **Rajasthan Industrial and Investment Corporation (RIICO)**
 ✓: Upscaling – Government, **Donor Agencies** – needs to happen in a big way
Thanks